Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/emcee/tests/unit/test_blobs.py |
FileSize | 1364 |
MD5 | 6EDEB7B444EBA08B93D7026688B1086F |
SHA-1 | 1E3536D6A8F3FE123E289D9A3205258DDB374E1D |
SHA-256 | 3343912D2B795E951B3E8E1863832D8C2FE701BE781DA3B210D1ABA68F58B4BF |
SSDEEP | 24:lQZerYA4CEQChCEA7iCph+GeKGEZHcC4fX1L4y8LvDE9:UecBCEQChCEsiCX+1Ex45ADE9 |
TLSH | T1F6210219D852909563D3D47A20E6A637EB78AD3FE7801CDEB06CA5009F2562C5472B5C |
hashlookup:parent-total | 14 |
hashlookup:trust | 100 |
The searched file hash is included in 14 parent files which include package known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
MD5 | 69525F72C264ED3364524A4DD6C076E4 |
PackageArch | noarch |
PackageDescription | emcee is a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the Astrophysics literature. |
PackageMaintainer | Fedora Project |
PackageName | python3-emcee |
PackageRelease | 3.fc34 |
PackageVersion | 3.0.2 |
SHA-1 | D14214BEC8F5FB43DC807F96139F89047A5D9F2A |
SHA-256 | EDA60DBD48FFA056D3571BED486F34F12D735C6C553E048A55C65F5EA3075D19 |
Key | Value |
---|---|
FileSize | 28804 |
MD5 | 6BF3059A1F478DE005F39794366850C4 |
PackageDescription | Affine-invariant ensemble MCMC sampling for Python 3 emcee is an extensible, pure-Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler. It's designed for Bayesian parameter estimation. |
PackageMaintainer | Debian Astronomy Team <debian-astro-maintainers@lists.alioth.debian.org> |
PackageName | python3-emcee |
PackageSection | python |
PackageVersion | 3.0.2-2 |
SHA-1 | 17986342F25FF116DC62559DE43D1877E085A237 |
SHA-256 | 76562CE931F850D729942D31AF72434BE3B8D8D1A0731162D16041F018A25B43 |
Key | Value |
---|---|
MD5 | BBDC17C6B5F997BABC737139766B846E |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python3-emcee |
PackageRelease | lp152.3.2 |
PackageVersion | 3.0.2 |
SHA-1 | 13D212065A9E7F7478C7530CECFB28D4A7D109EF |
SHA-256 | 9BD30DB35FF52D39974D1E279860E68C33873E1CB09E10FD0C252B0A1BB5AC9D |
Key | Value |
---|---|
MD5 | 576D0BF963CF00BC6D9A35169B3DC2D6 |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python2-emcee |
PackageRelease | 2.1 |
PackageVersion | 3.0.2 |
SHA-1 | 0804327E988AC64A392B51184765EA0D79F01010 |
SHA-256 | D8A45DCD577FF84FE07CE4BBFFC324531C3045C248E5AF78B367AAC1ED208321 |
Key | Value |
---|---|
MD5 | 978A14FC19EF5BE3AF65740F5C65C3E1 |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python3-emcee |
PackageRelease | lp151.3.1 |
PackageVersion | 3.0.2 |
SHA-1 | 92E8846173FC09ECFAD65DDA4BF50EC4921A17BD |
SHA-256 | 092D3114EE7014628ABA82F24ABEC7F62486855B931CCFF07D7B8D2AB2FF284A |
Key | Value |
---|---|
MD5 | 0C274E7C2E841E52350DE0A1DCA9FD4E |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python2-emcee |
PackageRelease | lp152.3.2 |
PackageVersion | 3.0.2 |
SHA-1 | C7ACE371E1413E9AC3941A7ADC2A0D729D769AE6 |
SHA-256 | 02CDB715DF9CD6DF5E3C62250016E39BE406D09C4044E0B89DF0D8D844080F58 |
Key | Value |
---|---|
MD5 | E78E55C5EDE1471548A524D292B51F87 |
PackageArch | noarch |
PackageDescription | Emcee is a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the Astrophysics literature. This is the Python 3 package. |
PackageMaintainer | guillomovitch <guillomovitch> |
PackageName | python3-emcee |
PackageRelease | 1.mga8 |
PackageVersion | 3.0.2 |
SHA-1 | 477420828217654F6CE9F89C0E9143E515C37AB5 |
SHA-256 | 44C92350AFBC55FC12E895A626B988EA02BED472AA8F4FD469285AD70D59CF7C |
Key | Value |
---|---|
MD5 | FBB41A0A4556E19EAF375EA81A3CFA00 |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python2-emcee |
PackageRelease | lp152.6.2 |
PackageVersion | 3.0.2 |
SHA-1 | AA9A49700805DDDD4ADC1F1FFBF301631F9B3231 |
SHA-256 | 628974EC83221F60001C003D4AF2169CA370859CFC53C0A266F40D2A731B12E7 |
Key | Value |
---|---|
MD5 | 5B92B8099A78D915F82E46419937FC6F |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python3-emcee |
PackageRelease | 2.1 |
PackageVersion | 3.0.2 |
SHA-1 | C617AED464800CD59CCD3C6EEDFEF579C271A322 |
SHA-256 | E39AA527A4DEFF5B0BD8EE97061FD53AE741C36D568E7AFF63F0BFF6D957D1D4 |
Key | Value |
---|---|
MD5 | 40A3472B72D05F0769078C7C48F74E73 |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python2-emcee |
PackageRelease | 2.1 |
PackageVersion | 3.0.2 |
SHA-1 | 3ACF38AB75C4D5F339EA7D001AB3CD1CC5B48395 |
SHA-256 | 54E3D78F5FEB758019D390E4FA2613531EE042EF17947C845BA5BF7361894644 |
Key | Value |
---|---|
MD5 | 899B1AC66621B9056AE2392AA68A429E |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python2-emcee |
PackageRelease | lp151.3.1 |
PackageVersion | 3.0.2 |
SHA-1 | 5CF61A11854C3F7E987564344026F1931D1EBE91 |
SHA-256 | 65996CDCDDAD8BE399F458695F1516AF2E88555B5BBDD1835E9C84B5A7857300 |
Key | Value |
---|---|
FileSize | 27284 |
MD5 | 841C69E63AC761E7318305521AF6E1D8 |
PackageDescription | Affine-invariant ensemble MCMC sampling for Python 3 emcee is an extensible, pure-Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler. It's designed for Bayesian parameter estimation. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python3-emcee |
PackageSection | python |
PackageVersion | 3.0.2-2 |
SHA-1 | 006FF24CE3B43A21DC9C55BD791E81C55650B6A1 |
SHA-256 | 02B993A48F195D43CFC444060880A87C4A62D68EA343A816F53ECE0FBC0F1482 |
Key | Value |
---|---|
MD5 | B25B09EF346529363BCA193F3FE6588E |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python3-emcee |
PackageRelease | lp152.6.2 |
PackageVersion | 3.0.2 |
SHA-1 | AC7EAD51DE8F59EA358DD158F43E8E55811136BB |
SHA-256 | 89F91D0B94E009C40989D5A097A7ABD362B4F32A5871BFF66F9B5BFE1828E741 |
Key | Value |
---|---|
MD5 | 779B7A5B3CAD971A706B24BE100092AB |
PackageArch | noarch |
PackageDescription | Emcee is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010) http://cims.nyu.edu/~weare/papers/d13.pdf |
PackageName | python3-emcee |
PackageRelease | 2.1 |
PackageVersion | 3.0.2 |
SHA-1 | 9785B00441EC9BBA70733C105B4AF6D2ED30C20C |
SHA-256 | 31C084730EB6754E9CBF7011235E6979BA1A45C686B3DD19B7A1D53675EC46A5 |