Result for 1E3082B0E541341846B7B27EAC2126CAFB0E00B9

Query result

Key Value
FileName./usr/lib/R/site-library/effects/R/effects
FileSize1056
MD5EBF0FC819595D631B8BF280C4B049940
RDS:package_id182052
SHA-11E3082B0E541341846B7B27EAC2126CAFB0E00B9
SHA-2562FB8B16BE23C820DAF2E51B7DDFEF61CA4978E561B1D228D546D1B356041F79E
SHA-512A427BB0442BB076EDD389C8553F618B54605012BDA8E62409CA657C7B000404E9E45684C03C2F4444C331A994BB48C98892DECED8153DF04654982EBF900F956
SSDEEP24:dh2pvjejSRmcyAOkHjlnAJAcEWrwYahkB1OOV0Ea:dijeuR5ysHjuecZVHC
TLSHT13911208C6410D6FB6A0104853C4F12CDE21B6763729DA091300DD52F7B09E7562F6996
insert-timestamp1679428382.0662453
mimetypetext/plain
sourceRDS.db
tar:gnamebin
tar:unameroot
hashlookup:parent-total58386
hashlookup:trust100

Network graph view

Parents (Total: 58386)

The searched file hash is included in 58386 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD59247ADEA25FDC78EB7714C8B387B5855
PackageArchx86_64
PackageDescriptionImplements two-sample tests for paired data with missing values (Fong, Huang, Lemos and McElrath 2018, Biostatics, <doi:10.1093/biostatistics/kxx039>) and modified Wilcoxon-Mann-Whitney two sample location test, also known as the Fligner-Policello test.
PackageNameR-robustrank
PackageReleaselp153.2.3
PackageVersion2019.9.10
SHA-100010F7302C37190DF2E079070F93AD1A1905B7D
SHA-256170A47D7451F91EBECBA2D9E3BCA60ACFF6F07894EE9C06B2D5D00BEC79D8443
Key Value
MD5CD44B5D47F5B8B41DC4F8593E2464E72
PackageArcharmv7hl
PackageDescriptionNormal Mixture Modeling fitted via EM algorithm for Model-Based Clustering, Classification, and Density Estimation, including Bayesian
PackageNameR-mclust
PackageRelease2.159
PackageVersion4.4
SHA-10003530BC038607E10A33EC093B6E0D0410DCF27
SHA-2567B4D13397BDCF6143CBFAFD4A63453A9FC838ECD9CA39A2F5C124D85A036201D
Key Value
MD537A8ACB359D85FC63CD696F12C153B5D
PackageArchx86_64
PackageDescriptionDrop-in replacements for the base system2() function with fine control and consistent behavior across platforms. Supports clean interruption, timeout, background tasks, and streaming STDIN / STDOUT / STDERR over binary or text connections. Arguments on Windows automatically get encoded and quoted to work on different locales.
PackageNameR-sys
PackageReleaselp153.2.3
PackageVersion3.4
SHA-10003DBD20758B6B6C02DB554CFAFB842E5CF3BD2
SHA-25697A53B4FFCCBCBE45030547CCA5C54F476E6B008BC309BFF8D75C16068065C59
Key Value
MD5BCA324BE9F7FB6721808C72FFC28AE31
PackageArchx86_64
PackageDescriptionAn R API wrapper for the 'Hystreet' project <https://hystreet.com>. 'Hystreet' provides pedestrian counts in different cities in Germany.
PackageNameR-hystReet
PackageReleaselp153.4.2
PackageVersion0.0.2
SHA-10004A57B771381D72846C56B5626A45C33E9B226
SHA-256A7F01D3D8152D49A78A07870489EB371EFC602F91BC166523B6B223DAA724747
Key Value
MD5DFF7FD5CE91CBAB4A28CC796FD3C7833
PackageArchx86_64
PackageDescriptionCalculate change point based on spectral clustering with the option to automatically calculate the number of clusters if this information is not available.
PackageNameR-SpecDetec
PackageReleaselp152.2.6
PackageVersion1.0.0
SHA-10004F27437E2C9A4A771E48D89ED1847B6735455
SHA-25672F9072C33B56DFAE8379D8C15230A5F5954209832371DA1AFDD998898EB23C7
Key Value
MD57364B0D23B194C96BD96617F5509FE85
PackageArchx86_64
PackageDescriptionEstimate tracks of animals tagged with acoustic transmitters. 'yaps' was introduced in 2017 as a transparent open-source tool to estimate positions of fish (and other aquatic animals) tagged with acoustic transmitters. Based on registrations of acoustic transmitters on hydrophones positioned in a fixed array, 'yaps' enables users to synchronize the collected data (i.e. correcting for drift in the internal clocks of the hydrophones/receivers) and subsequently to estimate tracks of the tagged animals. The paper introducing 'yaps' is available in open access at Baktoft, Gjelland, Økland & Thygesen (2017) <doi:10.1038/s41598-017-14278-z>. Also check out our cookbook with a completely worked through example at Baktoft, Gjelland, Økland, Rehage, Rodemann, Corujo, Viadero & Thygesen (2019) <DOI:10.1101/2019.12.16.877688>. Additional tutorials will eventually make their way onto the project website at <https://baktoft.github.io/yaps/>.
PackageNameR-yaps
PackageReleaselp153.1.3
PackageVersion1.2.5
SHA-10005ED5DF03D713EE07CF89E2B871F335632A4F1
SHA-256D498B7A9E540C765AF58C2692F6B61FED6C3E9D4F03E0E6728AE2D6CBBAC6664
Key Value
MD53F12AAD3ABC67A55B5BF2702B3414690
PackageArchx86_64
PackageDescriptionThe minimal 'rrapply'-package contains a single function rrapply(), providing an extended implementation of 'R'-base rapply() by allowing to recursively apply a function to elements of a nested list based on a general condition function and including the possibility to prune or aggregate nested list elements from the result. In addition, special arguments can be supplied to access the name, location, parents and siblings in the nested list of the element under evaluation. The rrapply() function builds upon rapply()'s native 'C' implementation and requires no other package dependencies.
PackageNameR-rrapply
PackageReleaselp153.1.1
PackageVersion1.2.3
SHA-10006406B2B217D1809C95E2308AA694C274B0AC9
SHA-2564D5E120C5AE9EC1E9920D3C78DCF1124FEE208033594F520C1C9C2FD3D49D3BB
Key Value
MD58375EB99ECAAF0C0884F30AE4E3440DF
PackageArchx86_64
PackageDescriptionProvides a selection of tools that make it easier to place elements onto a (base R) plot exactly where you want them. It allows users to identify points and distances on a plot in terms of inches, pixels, margin lines, data units, and proportions of the plotting space, all in a manner more simple than manipulating par().
PackageNameR-precisePlacement
PackageReleaselp153.1.2
PackageVersion0.1.0
SHA-1000645B29C1F121739328048FC8A292C182FACDC
SHA-256608343BD531E81B5DF9A5C0BC80351975F164F68AC621458BF23D3AABCE5ACB0
Key Value
MD534F1B28C3C0418AE428ECA9B4C511B59
PackageArchx86_64
PackageDescriptionComputes robust association measures that do not presuppose linearity. The xi correlation (xicor) is based on cross correlation between ranked increments. The reference for the methods implemented here is Chatterjee, Sourav (2020) <arXiv:1909.10140> This package includes the Galton peas example.
PackageNameR-XICOR
PackageReleaselp152.2.6
PackageVersion0.3.3
SHA-100067255D7CAF262562BA761CDCBDB1FF4BFE487
SHA-2561C7E28A2D8F8498FE8818C4122E9976672AD41AA8CF984B6A75F2B05B2705AFB
Key Value
MD527656C1BADB5C89BA9B9F3729836E58E
PackageArchx86_64
PackageDescriptionImplements an ensemble algorithm for clustering combining a k-means and a hierarchical clustering approach.
PackageNameR-hkclustering
PackageReleaselp153.2.3
PackageVersion1.0.1
SHA-100077027B7830BE4504863A44CB913DFBE6FD99D
SHA-256B745F3FF6FBC6DA35989B63B64AAA53A3125BDDF9A601550C1C338A3D43B8BAF