Result for 1D9AB61B1F7901AD8DF531994900C6D4866207F3

Query result

Key Value
FileName./usr/lib/python3.8/site-packages/seaborn/tests/__pycache__/test_categorical.cpython-38.opt-1.pyc
FileSize86562
MD54805FB10F2C2D85821FBD21B8CDDE983
SHA-11D9AB61B1F7901AD8DF531994900C6D4866207F3
SHA-2568381282EE0CD5F6A957CE5974A0B1D7198ADFD8EC91B67C8E34A456B17B084EA
SSDEEP1536:amVFCu6DkfAOl0QtWNIU5OvCzJrulf+zDL58G:nFCu6J5OrfG
TLSHT17683E9A8F4369E47FC29FBBC171F57A0CB66E20C736A7B126420D1593F5018E1DA26D8
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD55C08C3325020B07714498BBC25C5D07C
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-1DFDFA54E1CB9B44CCF46ADD3488FA020C636A5AA
SHA-2565DF92169F19E33792111B9898C75B259EE619D8A6EAD3A6D3504A842EF83DFD7
Key Value
MD522DC86AE0A2DEE85292A857E69394E09
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-1DBA61D470A066E02D8B859CF2D47A91759868C25
SHA-256750F25738587AA9C781CBC915C7D5CEA7CD70E48C89F2C6D557DAE3A19AD5E6B
Key Value
MD5B3B1C6EF85D9BBCEA1769E7BC80E17D5
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-19833D8BCD60E858C85387ADF406DDE6204EACF3E
SHA-25632BE3639D80DE3112C2958677E61ACC95D2691BD7EBD91D20452E2F6A513EB5C