Result for 1D7D62FBABA3BB37240590AB8DD0011BD511ABB7

Query result

Key Value
FileName./usr/bin/DB2arrow
FileSize80040
MD5DDBE06F87CF9AF1CFC39AA326262A8CC
SHA-11D7D62FBABA3BB37240590AB8DD0011BD511ABB7
SHA-25655BB508DEB56D848550C7E9B3AD2F7719522DCF2ACFE4571AC58C5338E6DBD69
SSDEEP1536:P0MqCuVGjva9BDJb+CL6sNMJ9ColmEGs6:PVvQ9b+CNNMJ9Colws6
TLSHT167733909B8A310FCC196C4708FFE92666D70B8564633AB7F2441AB343E5AE741B5EE31
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize209744
MD51F9C74E90F200A3F410BAEA7D0F5B4AA
PackageDescriptionmanage nucleotide sequencing read data To facilitate the multiple phases of the dazzler assembler, all the read data is organized into what is effectively a database of the reads and their meta-information. The design goals for this data base are as follows: * The database stores the source Pacbio read information in such a way that it can re-create the original input data, thus permitting a user to remove the (effectively redundant) source files. This avoids duplicating the same data, once in the source file and once in the database. * The data base can be built up incrementally, that is new sequence data can be added to the data base over time. * The data base flexibly allows one to store any meta-data desired for reads. This is accomplished with the concept of *tracks* that implementors can add as they need them. * The data is held in a compressed form equivalent to the .dexta and .dexqv files of the data extraction module. Both the .fasta and .quiva information for each read is held in the data base and can be recreated from it. The .quiva information can be added separately and later on if desired. * To facilitate job parallel, cluster operation of the phases of the assembler, the database has a concept of a *current partitioning* in which all the reads that are over a given length and optionally unique to a well, are divided up into *blocks* containing roughly a given number of bases, except possibly the last block which may have a short count. Often programs can be run on blocks or pairs of blocks and each such job is reasonably well balanced as the blocks are all the same size. One must be careful about changing the partition during an assembly as doing so can void the structural validity of any interim block-based results.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamedazzdb
PackageSectionscience
PackageVersion1.0+git20201103.8d98c37-1+deb11u1
SHA-103A15530972D8E5118F316404A11603D69E1BE13
SHA-256CD9D950C61320CC1075345393847D025535E803FBA921A3DDC1029437F4DE3D3
Key Value
FileSize209560
MD539C495A979143A973F3F3AD4CDB3DC52
PackageDescriptionmanage nucleotide sequencing read data To facilitate the multiple phases of the dazzler assembler, all the read data is organized into what is effectively a database of the reads and their meta-information. The design goals for this data base are as follows: * The database stores the source Pacbio read information in such a way that it can re-create the original input data, thus permitting a user to remove the (effectively redundant) source files. This avoids duplicating the same data, once in the source file and once in the database. * The data base can be built up incrementally, that is new sequence data can be added to the data base over time. * The data base flexibly allows one to store any meta-data desired for reads. This is accomplished with the concept of *tracks* that implementors can add as they need them. * The data is held in a compressed form equivalent to the .dexta and .dexqv files of the data extraction module. Both the .fasta and .quiva information for each read is held in the data base and can be recreated from it. The .quiva information can be added separately and later on if desired. * To facilitate job parallel, cluster operation of the phases of the assembler, the database has a concept of a *current partitioning* in which all the reads that are over a given length and optionally unique to a well, are divided up into *blocks* containing roughly a given number of bases, except possibly the last block which may have a short count. Often programs can be run on blocks or pairs of blocks and each such job is reasonably well balanced as the blocks are all the same size. One must be careful about changing the partition during an assembly as doing so can void the structural validity of any interim block-based results.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamedazzdb
PackageSectionscience
PackageVersion1.0+git20201103.8d98c37-1
SHA-1D3BD52A47A9A2A61D8F3D224E5A5A92146B57DF5
SHA-256FEC572E5D11AB69821F85941E70BE50C3F84F96921014D0A0066A3A258390538