Result for 1C2661FF3DC2F5D4580BA49DB78CF8F22A35AD4D

Query result

Key Value
FileName./usr/lib/python2.7/dist-packages/pycuda/tools.py
FileSize14112
MD592732B3540160302C47CBDAC58F0F04F
SHA-11C2661FF3DC2F5D4580BA49DB78CF8F22A35AD4D
SHA-25677E89D855530F02C3119D8FE695DF90FE7F067CD499EA7722F68928011744D89
SSDEEP384:McCWF0htPbfU+aQDStfxU1VHTZVVJfGa+:ZBF0TbfU+aiStfxU1h/VJfGa+
TLSHT12E52A55E3442A022A343C96D4DC3F003A36BAE57994C39B4F8ECA1643F85665D1F9FE9
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize290830
MD5ECD3EFCFE4F75515834707D724A8BE41
PackageDescriptionPython module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython-pycuda
PackageSectioncontrib/python
PackageVersion2014.1-3
SHA-104E0D8145D3810F0F28BAB86ADB02E7BFD9A6F8B
SHA-256FD0D0950BAE13D67BB17FE667E05609102B44E4B21B78C42D964C0DF4956F9D6
Key Value
FileSize270836
MD5824839BAE101E1F595D7BBFEC4DC0289
PackageDescriptionPython module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython-pycuda
PackageSectioncontrib/python
PackageVersion2013.1.1+git20140310-1ubuntu1
SHA-1ED2B2716DDD78BA7CCBF03C81D3A325B9332C344
SHA-2560FFF8E40AFA02B86ADDE6FE1297EA194CC644688EB27E4C9B282F40A3B84462C
Key Value
FileSize304682
MD5CE0BA381CB2F51A9F332F8D8E8767F8C
PackageDescriptionPython module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython-pycuda
PackageSectioncontrib/python
PackageVersion2014.1-3
SHA-18951AABF3818022D4EC45C4A1662A43B5ED755EE
SHA-256CA16EB9ADB14EA9379C1705FD381C3E9388031223C58F40F54B8AF67F5678330
Key Value
FileSize286710
MD555C4D78828DD6C5D174DFA73AB3A8362
PackageDescriptionPython module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython-pycuda
PackageSectioncontrib/python
PackageVersion2013.1.1+git20140310-1ubuntu1
SHA-1365759025B6938D917128F6A5D9A7120493AA77D
SHA-256A890F86665FF33AED134EB603581ADD813BAE668D3AB30AEB8A0830AEF2B812E