Result for 1BD39B407C4D27C19EE6AD7BAD8C92C453DC45FE

Query result

Key Value
FileNamesnap-hashlookup-import/lib/python3.6/site-packages/seaborn/distributions.py
FileSize24317
MD55F497502F59B9C6C5BB72E0D261E767F
SHA-11BD39B407C4D27C19EE6AD7BAD8C92C453DC45FE
SHA-256D3206183A2222DED6ED4893206F284F44DADEB89C1C992FB36DC797DB7325DA9
SHA-51298825590D6CFEB1B02E0C6297699D0671241D52D058DC484A79EFF85A956F81288404B53F1367215CF9391C018C39F5D861E7C3998B72C747764A13192B79713
SSDEEP384:QZghPfwNdpQG9c42u0Jl9Aaweymo6wpLdFY/lTC:Q+fwNdpAJlnrh/lm
TLSHT1E8B2C72FEA941B23C3C344E88DEEC0426364E413A64625787D9CD39D2F8943DD6B97AD
insert-timestamp1727098273.5104012
mimetypetext/plain
sourcesnap:0oZietUv4HBZqnYAVhtPwewC9Y3oHM4s_19
tar:gnamebin
tar:unameroot
hashlookup:parent-total25
hashlookup:trust100

Network graph view

Parents (Total: 25)

The searched file hash is included in 25 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.6/packages//mips64//py-seaborn-0.9.0.tgz
MD5F51D1B8C753FD0D24211AD935869498D
SHA-111AEB070029A8189B309A3B54B5F0EA48798A9FA
SHA-256835B5000BB99CF36AC31D0C1412D3AC5499877DACD872DFFE6B892D9BCC79040
SSDEEP12288:gZL+Cwn99g9pVhDjcFKgPCUkaP2RnsMHQzozABFoUS:gzpVhD5gPCU9P21ZQzOWG
TLSHT1F3B4236C1419410AF9B7AA97EA677473492F8821E4D90C811EC215BBB0F7B86CCD47EF
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.6/packages//sparc64//py3-seaborn-0.9.0.tgz
MD587DC20264AAF4E710B148F6EE9C23F99
SHA-13A6307E77F972FDFC4CCD7AC7BA2B440E6806FC2
SHA-25679874B5F4DCE9E27026308E4046911E763D07397BBAF7518AA123AA5951BF6A8
SSDEEP12288:9bpZ6lC7gQjbtCbEKnYSFsIJ4f6zkXOzMgMea+3:xpZ60cQVNKnXaI7zkXmxta+3
TLSHT1B9A423A7DDCFBC6A52EE80590DD889750E19F8673A831681C0E5B4964793A870EDF0FC
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.6/packages//i386//py3-seaborn-0.9.0.tgz
MD5D4EB7846183746CCB77A4F3F879CC073
SHA-1458C5618409336DB4684592E3C69636DD1106EF0
SHA-256A6CFEC3499E388E2EB2F0B8D419281FD54E12CBB440059804D296C5D1996D04A
SSDEEP12288:68cSi8D27SC7gQjbtCbEKnYSFsIJ4f6zkXOzMgMea+3:6F3fbcQVNKnXaI7zkXmxta+3
TLSHT14EA4237B88CFBE62E6CAC04A0C5499741F09F0677D822352D5E8B49F49637436EE51F8
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.6/packages//mips64el//py-seaborn-0.9.0.tgz
MD5CC1CA9F152498DAAF0321385F67A8436
SHA-1519CB0A9DA8B6C2A9BA93768511790D41035F496
SHA-256E59681E5255219D6519E6081FEDF506BFD3A9F7D7D68A2461868C1B4FC7BEC33
SSDEEP12288:+GuGIg9pVhDjcFKgPCUkaP2RnsMHQzozABFoUS:vZpVhD5gPCU9P21ZQzOWG
TLSHT102B4233C056A411EE5F79AEBA26BA4238D1DD411D2DC2E955BC111BA70F7E8188F03EF
Key Value
MD5CA1DD84D60A3070490F95F0C640E2B2B
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels.
PackageMaintainerFedora Project
PackageNamepython3-seaborn
PackageRelease9.fc32
PackageVersion0.9.0
SHA-15254451A8880CF7EE1308F6B7578705B08E3A845
SHA-256E6AE8D1FD7761305897D4B3C56698582A767EFBA11337C7487AB268FA8E5A16A
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.6/packages//arm//py-seaborn-0.9.0.tgz
MD527250E82A1D4393D392FCC0748852822
SHA-15FBDAC413520DA2BEA2245391E6CC6518CB47CF2
SHA-2562345C5FBE14DD40013CAFF70E2AC6FFA02E6EC821627A0C978BFBCE09F2304F9
SSDEEP12288:xbyRKaPwFLWNg9pVhDjcFKgPCe6qsnsMHQzozABFoUS:MRPoxW6pVhD5gPCe6qkZQzOWG
TLSHT1C3B4233C199D05039AA35E9FA263F5238D1D9011DAD929876BC217FF713ABE244B036F
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.6/packages//powerpc//py-seaborn-0.9.0.tgz
MD51FAFF080BAAF2B0E028CBFD384A3CE9A
SHA-165F314D7B255623A339B9C8C6873AC0F7698C8AD
SHA-25695001615CE757176028B7CEB355AF39EE4860B14ED726B84D942E7C4D7B5C1F0
SSDEEP12288:EWYuGmg9pVhDjcFKgPCe6qsnsMHQzozABFoUS:EWYDpVhD5gPCe6qkZQzOWG
TLSHT181B4233C0CA6400BA5B3EDEB966764238D1D9021C2C91E845AC215FEB4F7F9598F07EB
Key Value
MD5962B8A994AEC73A203CF682A5052B181
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython2-seaborn
PackageReleaselp151.4.2
PackageVersion0.9.0
SHA-179C083E1055EBA2C3E8D6B7035A7EF49D9F483AE
SHA-256AA6450BD4EB6D6D8DDA8A9598CAB909C55178E6430E215E9995C01F1D2508397
Key Value
MD5479D368D927436F36DC8ADB3C5E5C060
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython3-seaborn
PackageRelease4.2
PackageVersion0.9.0
SHA-17CDD368A02CE9A4467BBC913E8384E37BC4DDF76
SHA-25635C035ADF9848768106E6C3704BF70BA9C0E8874D7AC5817B37AEA5DB1F758A2
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.6/packages//sparc64//py-seaborn-0.9.0.tgz
MD5D9D977915E6E532D67D9EB1CA6A40BC0
SHA-17F880C2A82787A602E3CAB3B03BA856535B269EB
SHA-25669F8FC6F8904F2E1A2A4896B960B82C32AECC5FC156EBC518E3BAD128A57AF51
SSDEEP12288:GxFJw2Ng9pVhDjcFKgPCUkaP2RnsMHQzozABFoUS:GxFJw/pVhD5gPCU9P21ZQzOWG
TLSHT10EB4232C094A140AFE73999BF5326433892ED851A99D2D552FC106FB71B7F828CE43DB