Result for 1A31E9BB4E1C87E0F46C439E9343EAC099BC9083

Query result

Key Value
FileName./usr/share/dart/cmake/dart_utilsTargets-none.cmake
FileSize866
MD55575A724C35FB041A07AEA95D43871DB
SHA-11A31E9BB4E1C87E0F46C439E9343EAC099BC9083
SHA-256ECF0BFEA437FE68F8FF85C269BF61649C3DF3A11D572669A26D585186485A798
SSDEEP12:x3mcq86bVZdY0B2pnJRWDUVYARVBnjDHHiInypyBWvrSyGtOMfvJyM6yBWUUL2mp:x3m7hK0qUMYAx3iIn9Ir/MNrPyjUu
TLSHT19411BD320EC78C7383D3EE6136982114D9B085F3474A3D354E461B1913E0C64490F49E
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize33736
MD5AC69473A6101BDD5B0B4136E74BAE6A5
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-1D9EA1B9C52321D313CDFA19DBDB8EFD9EA1406A9
SHA-256295F00AF8193758B8C0BFAFD6031EAC555B9EE07F12ADA3E6D33260F4B4DD7E1
Key Value
FileSize33644
MD504B0302C8BD3B28DDC03F291D755AB72
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-142F6F67BB65217868D4A922E20FA00E8A9680244
SHA-256AE11879262CA8C0CDE3F679CB61218B0BC35BD24D3D10813B1C18EC442775CA4
Key Value
FileSize33752
MD5B095173063B28B394CFA0E996ABA6CF6
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-1A86121505C3178BAE36062498A49202EE149905D
SHA-25628B2FAA91A0642AD1C83572577A4B2DDA8151FE7B53ED36C691AE440C6B8325F
Key Value
FileSize33664
MD5FF9877C6EBA5954A52CADBBA605D4B6C
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-187E538DDDC6E1AABE59460D8ADFBE469A13B8372
SHA-2568550403E6BEA805994A510EE79A655E0B3F300554C4EEBEB6D844A9C95E38418