Key | Value |
---|---|
MD5 | 602BD89EE04B570B5AA229E02F35A61B |
PackageArch | s390x |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python-scikit-learn |
PackageRelease | 1.fc21 |
PackageVersion | 0.15.2 |
SHA-1 | 1A26BBC9E5CA3AD56623399C8BA71988BA03B17E |
SHA-256 | 59073914549E965CDBBBA42E8CB75DE2EEFD01C7D9CC37B9D1EEB0C231B0238E |
hashlookup:children-total | 906 |
hashlookup:trust | 50 |
The searched file hash includes 906 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/test_forest.py |
FileSize | 17601 |
MD5 | 856C9EB5C6357A8E978BB27ED478B14D |
SHA-1 | 0001980ED073FFA12C4D97EE33F9FC4D4A9FF043 |
SHA-256 | 95CDF4DE2328FC18906E92054FE52629B8B6B99CEF8992750C9EA14D9533FA72 |
SSDEEP | 384:RmH3A2etKtuw8ixVT17yl8iMX5nITJojVpKv+66wLoVE/wpL+:RmH3A/tKtuw9xVT17yl8NX5nITJojVpu |
TLSH | T18482D703F8960D595B53297E24DE510827956B1B860818753EFFD0086F9462CB3FBBBE |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/ransac.py |
FileSize | 13952 |
MD5 | 67B38A5B19534C15626BEDDA27CE70D0 |
SHA-1 | 000C0BD44626C1E94A98B9CB8615101BC35C180F |
SHA-256 | 526176561F560882ECAE0B67F451191EBFC36F7E9228B327F61452F553983492 |
SSDEEP | 192:1axKzOGnKFnGWjPfIAeMl0Bgox2WGZHO6qWKNRKES6dIhBNRERZCoNbk7A:oK68KRTfIAXkaHRKS6aBsRZhb7 |
TLSH | T17F52940568203B374A87B5B068DE010BC77918A79686A4757CFCC3AD1F6297873ADBD8 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/linear_model/tests/test_passive_aggressive.pyo |
FileSize | 7891 |
MD5 | 74481C65563F9AD17E284226C4C5AE8C |
SHA-1 | 003A9B1198E37B146A2BA913184B25D149ABCA51 |
SHA-256 | 06172BD83893393C27F751B1582C788E42CD447381C7FDAAAA0ABAA13D886966 |
SSDEEP | 192:IOFHqlvyx2aZXNfduAfhVZ/jwVOrU42hg5orq8j:I+qZC3HZj5rSQ8j |
TLSH | T11CF11D40B3F28E9BD0B51978A5F00217AAD4F6B76A027B4086BCE03F3AD8325D56F745 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/linear_model/tests/test_sgd.pyo |
FileSize | 35336 |
MD5 | 0ABEA68FCC525B69B8F2A5816A21D6DE |
SHA-1 | 00CA34206437F252E64B7DA828CBB1B7CC0F7E09 |
SHA-256 | FFCC9CB351E574C9FB3E506D2CFE31AC887670C775F55959C5C888E714E0F58A |
SSDEEP | 768:+hOdHxsYQaiADyTfRLbAEfeXvFxFSqSlZ6HeYLyKICL/3vufv:+hOdHxsYQaiAuTfRL1feXwqSlZ6HeYLW |
TLSH | T181F2CE81E3E24E5BC1B90835A5F0531BADA8F477AE01778156BCE43E3AD8399C46E3C5 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/linear_model/ridge.pyo |
FileSize | 37682 |
MD5 | 254F9ACD3D138E9DBEDB7CE6A15A5C4D |
SHA-1 | 00E20A544D7A8757E401ECFC70488C96D940ED5A |
SHA-256 | 52E7B25B42160142B930D81626B99C6EC2D4C289947E9F2EBE8BBA78DFC305FB |
SSDEEP | 768:H0AgDOv7j1D1Gp6N6Slg9Jf9Ow7NoQkCG:UAgCv7j1BGpQllgjf9ZhoQo |
TLSH | T14103A340ABA55AABC522917174F402479FA1F07BE6423B503AEEE1393FD5278C16F788 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/cluster/plot_cluster_comparison.py |
FileSize | 4865 |
MD5 | 919283D95801BDB1582E6768ADC62A65 |
SHA-1 | 0145D31CB950A8CC679300AF4CF93EC48DE5D612 |
SHA-256 | 64C861D3DC5FE9F11F44F2AA5A86FF15BEB60B26B7974895663F37DC729039C3 |
SSDEEP | 96:hLrD8Hd/MIsALpqtjAFejIHXSNIuGytASwTgSNexmDDz4bW:h4nVBgZ/6tLQW |
TLSH | T176A1857167126117EF93B09A4EB751E837946057075028AAB52CC3254F0BB3CB3F2B9B |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/exercises/plot_cv_digits.py |
FileSize | 1207 |
MD5 | C21A69A2BC54F263E69035C048095865 |
SHA-1 | 016D65381370139D98DCC375AACCF083CD195B82 |
SHA-256 | 657225AA5357703DBAC9E250E5690997774CA4C566BC32D257203E93FCAB5E17 |
SSDEEP | 24:akV7BmSxOgUWqNqag5YEA5BRklGiVQ+zAsyPs1J:akaSVUNJEMBRkbuWyOJ |
TLSH | T1B621DC0CBAA6B2780B9284B4FC44507137E393106708683E78ABDC6D5646F372B61CB2 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py |
FileSize | 1446 |
MD5 | 6C764C92907310B7717595E840304798 |
SHA-1 | 0193A74906128D26183FB66001B61CA5D447B865 |
SHA-256 | 5D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D |
SSDEEP | 24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs |
TLSH | T116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B |