Result for 1A26BBC9E5CA3AD56623399C8BA71988BA03B17E

Query result

Key Value
MD5602BD89EE04B570B5AA229E02F35A61B
PackageArchs390x
PackageDescriptionScikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts.
PackageMaintainerFedora Project
PackageNamepython-scikit-learn
PackageRelease1.fc21
PackageVersion0.15.2
SHA-11A26BBC9E5CA3AD56623399C8BA71988BA03B17E
SHA-25659073914549E965CDBBBA42E8CB75DE2EEFD01C7D9CC37B9D1EEB0C231B0238E
hashlookup:children-total906
hashlookup:trust50

Network graph view

Children (Total: 906)

The searched file hash includes 906 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/test_forest.py
FileSize17601
MD5856C9EB5C6357A8E978BB27ED478B14D
SHA-10001980ED073FFA12C4D97EE33F9FC4D4A9FF043
SHA-25695CDF4DE2328FC18906E92054FE52629B8B6B99CEF8992750C9EA14D9533FA72
SSDEEP384:RmH3A2etKtuw8ixVT17yl8iMX5nITJojVpKv+66wLoVE/wpL+:RmH3A/tKtuw9xVT17yl8NX5nITJojVpu
TLSHT18482D703F8960D595B53297E24DE510827956B1B860818753EFFD0086F9462CB3FBBBE
Key Value
FileName./usr/lib64/python3.4/site-packages/sklearn/linear_model/ransac.py
FileSize13952
MD567B38A5B19534C15626BEDDA27CE70D0
SHA-1000C0BD44626C1E94A98B9CB8615101BC35C180F
SHA-256526176561F560882ECAE0B67F451191EBFC36F7E9228B327F61452F553983492
SSDEEP192:1axKzOGnKFnGWjPfIAeMl0Bgox2WGZHO6qWKNRKES6dIhBNRERZCoNbk7A:oK68KRTfIAXkaHRKS6aBsRZhb7
TLSHT17F52940568203B374A87B5B068DE010BC77918A79686A4757CFCC3AD1F6297873ADBD8
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/linear_model/tests/test_passive_aggressive.pyo
FileSize7891
MD574481C65563F9AD17E284226C4C5AE8C
SHA-1003A9B1198E37B146A2BA913184B25D149ABCA51
SHA-25606172BD83893393C27F751B1582C788E42CD447381C7FDAAAA0ABAA13D886966
SSDEEP192:IOFHqlvyx2aZXNfduAfhVZ/jwVOrU42hg5orq8j:I+qZC3HZj5rSQ8j
TLSHT11CF11D40B3F28E9BD0B51978A5F00217AAD4F6B76A027B4086BCE03F3AD8325D56F745
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/linear_model/tests/test_sgd.pyo
FileSize35336
MD50ABEA68FCC525B69B8F2A5816A21D6DE
SHA-100CA34206437F252E64B7DA828CBB1B7CC0F7E09
SHA-256FFCC9CB351E574C9FB3E506D2CFE31AC887670C775F55959C5C888E714E0F58A
SSDEEP768:+hOdHxsYQaiADyTfRLbAEfeXvFxFSqSlZ6HeYLyKICL/3vufv:+hOdHxsYQaiAuTfRL1feXwqSlZ6HeYLW
TLSHT181F2CE81E3E24E5BC1B90835A5F0531BADA8F477AE01778156BCE43E3AD8399C46E3C5
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/linear_model/ridge.pyo
FileSize37682
MD5254F9ACD3D138E9DBEDB7CE6A15A5C4D
SHA-100E20A544D7A8757E401ECFC70488C96D940ED5A
SHA-25652E7B25B42160142B930D81626B99C6EC2D4C289947E9F2EBE8BBA78DFC305FB
SSDEEP768:H0AgDOv7j1D1Gp6N6Slg9Jf9Ow7NoQkCG:UAgCv7j1BGpQllgjf9ZhoQo
TLSHT14103A340ABA55AABC522917174F402479FA1F07BE6423B503AEEE1393FD5278C16F788
Key Value
FileName./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py
FileSize2407
MD56CCA3A2DFA57FF6AF3CF3A27AE22F209
SHA-101070C25205C477A297A7CCE48DA78871F64DD2C
SHA-256298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8
SSDEEP48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq
TLSHT1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD
Key Value
FileName./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py
FileSize1895
MD5A4CC2943F64D2730EF80B9504C583D19
SHA-1011BDEF5443BE65B5EC29C9D37FCEEC7206429FA
SHA-2562B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC
SSDEEP48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr
TLSHT15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47
Key Value
FileName./usr/share/doc/python3-scikit-learn/examples/cluster/plot_cluster_comparison.py
FileSize4865
MD5919283D95801BDB1582E6768ADC62A65
SHA-10145D31CB950A8CC679300AF4CF93EC48DE5D612
SHA-25664C861D3DC5FE9F11F44F2AA5A86FF15BEB60B26B7974895663F37DC729039C3
SSDEEP96:hLrD8Hd/MIsALpqtjAFejIHXSNIuGytASwTgSNexmDDz4bW:h4nVBgZ/6tLQW
TLSHT176A1857167126117EF93B09A4EB751E837946057075028AAB52CC3254F0BB3CB3F2B9B
Key Value
FileName./usr/share/doc/python3-scikit-learn/examples/exercises/plot_cv_digits.py
FileSize1207
MD5C21A69A2BC54F263E69035C048095865
SHA-1016D65381370139D98DCC375AACCF083CD195B82
SHA-256657225AA5357703DBAC9E250E5690997774CA4C566BC32D257203E93FCAB5E17
SSDEEP24:akV7BmSxOgUWqNqag5YEA5BRklGiVQ+zAsyPs1J:akaSVUNJEMBRkbuWyOJ
TLSHT1B621DC0CBAA6B2780B9284B4FC44507137E393106708683E78ABDC6D5646F372B61CB2
Key Value
FileName./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py
FileSize1446
MD56C764C92907310B7717595E840304798
SHA-10193A74906128D26183FB66001B61CA5D447B865
SHA-2565D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D
SSDEEP24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs
TLSHT116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B