Result for 185424ADA2E0A0AEF93D484F37A7A2D60633F925

Query result

Key Value
FileName./usr/lib/python3.6/site-packages/seaborn-0.8.1-py3.6.egg-info/top_level.txt
FileSize8
MD53877210C6B9ECE35CA3C4388CDE3BCB1
SHA-1185424ADA2E0A0AEF93D484F37A7A2D60633F925
SHA-256191214D5969DAC63402C4D711B9E066D313123B7EF4A4109621EA9F175E0A1E2
SHA-5127747853FF01B97694327B34488636E7839FD81E484160CDD126CB06CD73D02A0B6C54C97D947255F08303E0D17512D915C5B868E1B7A13B331C51934FE778C3C
SSDEEP3:Nb:Nb
TLSH
insert-timestamp1727098319.662046
mimetypetext/plain
sourcesnap:0oZietUv4HBZqnYAVhtPwewC9Y3oHM4s_19
tar:gnameroot
tar:unameroot
hashlookup:parent-total120
hashlookup:trust100

Network graph view

Parents (Total: 120)

The searched file hash is included in 120 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.9/packages//sparc64//py3-seaborn-0.11.1.tgz
MD540661AE586D4CE5EF73A08AB3F40EB8F
SHA-1088673F9592B271673557080000D8EAAF2E0D33A
SHA-256CCF627C7E17DF4A09F251D870A6B8A12EAC59A44CE859AEB492E91A806E1342F
SSDEEP12288:Ua/G7aFVRQvBQjwe5GVClSXT7j7KC8Qd5fx21jrpAnyy9Xox+UF:Ua/G7u8msmGVClS3BtxyY9a5F
TLSHT1A7D423746CF4F258E13770AB9D373EC6A1004ECBEDE529050DDAE0E493AAC42419DADE
Key Value
MD549967476B366C7617EEECFE954DCD47C
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-seaborn
PackageReleasebp154.1.20
PackageVersion0.8.1
SHA-109F67E0B72DA43AAEA39FF833A8FF62D342E251E
SHA-2563A220E7B5EA8C9F018A4F2686ED40DC746EFD1F25A8B522A523BBB1B0AA5BA10
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.8/packages//amd64//py3-seaborn-0.11.0.tgz
MD5323FFB3E1338C94D0884C9D7BC1DD6FB
SHA-10B28BAC12EAE21DF40501A93384391BC50355219
SHA-256EB025FDC4FACE5AD42D3288417C0377FF193A7E2E93AB8522FCA2F7D4B7265BA
SSDEEP12288:pA6Z3L6/No6sqrOlSjktarQsGiA9NwUt7OI8VGpXqTifniylx:Oe6rOlSAtarQLoUt7DpXcfwx
TLSHT1C9D423F4D44A4F099B781E9F3971F03DD92AD5AA1A633C9208FD7325C93A05DED4A883
Key Value
MD5E6F0903A783883CA5BAE74AC86450CEE
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels.
PackageMaintainerFedora Project
PackageNamepython3-seaborn
PackageRelease5.fc23
PackageVersion0.5.1
SHA-10B4D4AF5909A86F25BA33C6EBAA8C4CB9FB1DA12
SHA-256BD120AE30A0C74B0CB9C395D7C9437866F3FBD9ECB193735B461EAD664A2059A
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.9/packages//mips64el//py3-seaborn-0.11.1.tgz
MD5FED05D66B1ED6E11514F83414F7BAC66
SHA-10C1D50B7A919F6E4367079B6493FC5F4EEB998C7
SHA-2563657339E039A0DB635130226CF94FEC61945976772820D448908F9AB67A01D6C
SSDEEP12288:QIeiG7aFVRQvBQjwe5GVClSXT7j7KC8Qd5fx21jrpAnyy9Xox+UF:QViG7u8msmGVClS3BtxyY9a5F
TLSHT16CD423346DE4F248F13B74EB9D273DC6A1004ECBEDA429060DEAE0E597AAC4142DD9DD
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.6/packages//mips64//py-seaborn-0.9.0.tgz
MD5F51D1B8C753FD0D24211AD935869498D
SHA-111AEB070029A8189B309A3B54B5F0EA48798A9FA
SHA-256835B5000BB99CF36AC31D0C1412D3AC5499877DACD872DFFE6B892D9BCC79040
SSDEEP12288:gZL+Cwn99g9pVhDjcFKgPCUkaP2RnsMHQzozABFoUS:gzpVhD5gPCU9P21ZQzOWG
TLSHT1F3B4236C1419410AF9B7AA97EA677473492F8821E4D90C811EC215BBB0F7B86CCD47EF
Key Value
FileNamehttps://ftp.lysator.liu.se/pub/OpenBSD/6.8/packages//mips64//py3-seaborn-0.11.0.tgz
MD552A5D8B2BB1A7C360C3998C798EC3783
SHA-1191D721F56F1BD5289027C0E7DD8866F4370DFB5
SHA-2561C212DA993A6297DF395DA93E8205BD396756D3C248D201F1E388382393AF775
SSDEEP12288:ZqZ3L6/No6sqrOlSjktarQsGiA9NwUt7OI8VGpXqTifniylx:Xe6rOlSAtarQLoUt7DpXcfwx
TLSHT1E4D423B4D44A8F05ABB81E9F39B1F03CD826D5AB19633C9205FD7329C93B09DAD45893
Key Value
SHA-1193D4897A223717A11ACAB916F35D7F7421D95D1
snap-authoritycanonical
snap-filenamewBEQd0pf939OMkQxQzjc5edUUJ7UTdoO_22.snap
snap-idwBEQd0pf939OMkQxQzjc5edUUJ7UTdoO_22
snap-namerapunzel
snap-publisher-idiF39jGin6mL9yavM0mp1QbryMUfExcYE
snap-signkeyBWDEoaqyr25nF5SNCvEv2v7QnM9QsfCc0PBMYD_i2NGSQ32EF2d4D0hqUel3m8ul
snap-timestamp2021-03-04T12:32:37.365593Z
source-urlhttps://api.snapcraft.io/api/v1/snaps/download/wBEQd0pf939OMkQxQzjc5edUUJ7UTdoO_22.snap
Key Value
FileSize75258
MD557B995B560724CD100104BC0CD78B3C1
PackageDescriptionstatistical visualization library Seaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. . Some of the features that seaborn offers are . - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations . This is the Python 3 version of the package.
PackageMaintainerNeuroDebian Team <team@neuro.debian.net>
PackageNamepython3-seaborn
PackageSectionpython
PackageVersion0.4.0-3
SHA-11976FCD03BB705F3A80A9CAB64CC86EB4A24BA82
SHA-256DDF0B82808EB93FC3FD99AABEE1EA809F544F949EE396FE151F73940C3DCEED4
Key Value
FileSize75186
MD57B6830A3D1439FDD611EDB6ED6EDC14C
PackageDescriptionstatistical visualization library Seaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. . Some of the features that seaborn offers are . - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations . This is the Python 2 version of the package.
PackageMaintainerNeuroDebian Team <team@neuro.debian.net>
PackageNamepython-seaborn
PackageSectionpython
PackageVersion0.4.0-3
SHA-11A57AF2AF6075B1F949D1DE5B558801B2CA9E365
SHA-2561313126D78A29E06B2DC1B48C275CA25344D76EEDCC0131137D6F4A2667C4BF8