Result for 180C07939DD60295EF31CD4E90C68A5D6459159D

Query result

Key Value
FileName./usr/lib/R/site-library/qtl/doc/rqtltour2.R
FileSize5241
MD5F8569D240E7F00630B002306F6AF77A3
SHA-1180C07939DD60295EF31CD4E90C68A5D6459159D
SHA-256E5FEBF6E9CC24DF4DB47185A176BB63CE4C47E8ED4FF3418A76488054279A2D6
SSDEEP96:DJuyRd3mPrV/iDXfwl2Ixocy5GSzhfon6vRa4aB6QWhkE:t7RC/au/iO6vRF+ZWj
TLSHT122B14316B40B115607DD9F389DBA67A83F1AD6067D6F485F7C2D6420390EC5EC8B81E8
hashlookup:parent-total49
hashlookup:trust100

Network graph view

Parents (Total: 49)

The searched file hash is included in 49 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize4202324
MD599686B1BD763235E671CBBB2E30D1BBE
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses were implemented. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.40-8-1
SHA-1012F6E3BB53279E9B6AABD81E2BC50BBF1E2FF8F
SHA-256660B67D4C1B29086E127E03045A7292F1AA49F0B1B72BF9DF2DCB973D7B813FD
Key Value
FileSize4076788
MD55DC9592A5A297E575744E0E854D23702
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms were implemented, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.27-10-1
SHA-104B33AD1689247407376A95D5A325F07047C266C
SHA-25693CF1870DE7169A8D627DCE20994EF6DD138F0C8F86D1ED764A1D3570B3D9921
Key Value
FileSize5022684
MD5994F37C529B630C00FF8CE7C540C28B5
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses were implemented. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.37-11-1
SHA-10765EF32CCED8DFFBE9D15F85B426C96ACC089CF
SHA-25656C37B4EE4F9A10B11445CCD5433525A616C972DEC9552E2E31A1AB067B3D457
Key Value
MD57E11E63E211156249326E0E8EC466F4D
PackageArchppc64
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc20
PackageVersion1.28.19
SHA-10EC3C659ABDD78EFEF862C7193B80B5D080DF978
SHA-256255BE44F551362192BE44CDB096023CF7B2098E57104F23A5660848A5F6C619A
Key Value
MD59750DF82F0E4D027717DADD269E8C88E
PackageArchppc64
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc22
PackageVersion1.36.6
SHA-11C0CEA23687BC14326460A77AF3D88F8C2BDE609
SHA-25687A88C4D92F5E4F30692F4BD15B168527AC40F3BD927399BE316E074D396F6CB
Key Value
MD50D15A653CE776D1DFF48DD5F1B1DF267
PackageArchs390x
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc19
PackageVersion1.27.10
SHA-124A8E3A68598CAC1CA173E5D84342A69E0E8CE7A
SHA-256069AD59DFAE9C8D100B7A13B600CD0DE8E098156DAC4A59B93E806E5713239F1
Key Value
MD52E73EAB54C2CF46809A86C19610096D8
PackageArchs390x
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc21
PackageVersion1.33.7
SHA-12A3D407AE1C9E707FD1C9A59083FD9E6E9AB894A
SHA-256F5208597A33B4760B5650491F816B23D79BB772EBEEDBF2BABF855505047F2AF
Key Value
FileSize4046320
MD580FA07D1D375927C9BB5BA52810C2B13
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms were implemented, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.27-10-1
SHA-12B998786CAEA8ACCB92EFDFC36C8979585649566
SHA-2564245A7C59F4640269FDCA264F5434D901D6823B0CEA98F1A164049B4C7A36B3D
Key Value
FileSize4186496
MD506AC5EF798721B67DF8FD918AFC7E904
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses were implemented. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.40-8-1
SHA-12BCF1023028031488B29CD16190CB57C5B8C069D
SHA-256F1CE284F9B0980FEB5592FDE04B6A4052423E11AFE9A5DA663F9609114E6A105
Key Value
MD5695643DDC2534B9AE4C89CBFD97972A2
PackageArchs390x
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc20
PackageVersion1.28.19
SHA-12C74DCF84B133BA001F040C752C0FB327C41EEAA
SHA-256ACF372F6672E8E1B9EF6C0D2915A9197303D3C1808B0A8A935A65E248BE32C63