Result for 1755A04E26211244E2CC93B4B85F61862F2BF49C

Query result

Key Value
FileName./usr/lib/python3/dist-packages/pycuda/tools.py
FileSize14031
MD53C6050A483C873E641C0A4006BC89E98
SHA-11755A04E26211244E2CC93B4B85F61862F2BF49C
SHA-2563CDEB1BD726D6C9018855F878F4EB1971421EBF5D7DA46A454A777F33FB71EF5
SSDEEP384:7cCWF0hGP3vU+aQDStfxUY0HTZVVJfGa+:IBF0w3vU+aiStfxUYA/VJfGa+
TLSHT16652A55E3442A022A343C92D4DC3F003A36BAE57594C29B4F8ECA1643F85666D1F9FE9
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize289846
MD52D889EAE840CC2AC22595A7F852665AB
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2013.1.1+git20140310-1ubuntu1
SHA-1F02966E5E806DD6C1C75495A0A69B246E97D615C
SHA-2562F387E80DF0F14AB9DB174CC2C5433792C7CE8211EC60DBF367FAC39D2A33D27
Key Value
FileSize274644
MD5ED8AD29029BB381193C32B3F4033D624
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2013.1.1+git20140310-1ubuntu1
SHA-1CC44752730EAE48E9322FD9E9E6E8627120EDD40
SHA-256B56B41089750487F10DC079C86C92F32FA0E895C44CB1C93819F29AA2A259147
Key Value
FileSize306638
MD520BDBAB60A23CABB6F145E5DAE81139A
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2014.1-3
SHA-1711C5ED5C3AEBDB32C077E013C40061F29A82AA9
SHA-256705403069432FD30956221AAC74170A1853DE5B14F3B4B2C7FECB6D4674E3FB1
Key Value
FileSize295882
MD5CDDA0DCCC9DBCA6143B952EEE0B38FBA
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2014.1-3
SHA-13813DE52F4C7FB34A679A751F1AB68D4CE3A8E7A
SHA-256BB42B676C5A967925887C2604B20645485086CB062B8A2E5060DA030A87CC087