Result for 15B296211D4FC5F87662B040D47D39EE1688840F

Query result

Key Value
FileName./usr/lib/python3.8/site-packages/scspell/__pycache__/__main__.cpython-38.pyc
FileSize242
MD5D61A590BA511CF3BE4C29429EBC7C5F8
SHA-115B296211D4FC5F87662B040D47D39EE1688840F
SHA-256991F9D6CCB3A5544D54699C80A1856C0390682A6064576466CE930B198221248
SSDEEP6:XWUlxbs+JBvhpSTXYs/lbJCB6/r/YK2G9YvLor+K8gxn:/lxQ2ZWv/cI/Twc8cn
TLSHT12AD02342455456E5C5F8B6FA7110D03D41773975564252072F5C254FEC0E7914965F1C
hashlookup:parent-total8
hashlookup:trust90

Network graph view

Parents (Total: 8)

The searched file hash is included in 8 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD558358DB030E559A96B6ACC70BD9002D4
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython38-scspell3k
PackageRelease18.22
PackageVersion2.2
SHA-1A66A028FD80CD2E2841A4A812113C04F857E24C8
SHA-25655D6273DC5C0804281DC781CB3720DDBD4C4D85A3766B97C947CCC19D0BF501C
Key Value
MD5F81596E25FCA460EF3476BC6FBE559E0
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython38-scspell3k
PackageRelease18.31
PackageVersion2.2
SHA-1F91733FAB3851BF2D3FD6CA9C67DD3ECA116F033
SHA-25696BDFD55977C0CA410F045D4552885E0757539658F96BE1D74CB7EE75C767FA9
Key Value
MD51D76512AF27AD8FF416AE8C9430211C2
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython38-scspell3k
PackageRelease18.22
PackageVersion2.2
SHA-1CFDDFC43F58C8B9C591D31CF78499892226B0EA3
SHA-256FB60D05C43A28062FE339AC9757F1DC1FC67F15F176B69DFD63335D2D0F963CB
Key Value
MD5A026FF6B2B790C01D6D1FDF4BD641C66
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython38-scspell3k
PackageRelease18.17
PackageVersion2.2
SHA-185CF66CDB67F7099D46B0C42C91AF9D46D806E06
SHA-256D7D9F9A5C9D1804DFCBC1C4D62E030DD32D4B159B1B101FCC0C6738E4614592B
Key Value
MD50A07C2634E1B47A8CD132A3E1BB2BBDE
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageRelease2.3
PackageVersion2.2
SHA-11DAA2D0B8234C61E0BE2675286356DD97AF9B84B
SHA-25656DFF6F625F137C889A2E92928B1180C0E870A382A1403EAFB13A3BA6218716F
Key Value
MD59F3E9A3E782737FD9AA127034BA9A648
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython38-scspell3k
PackageRelease4.9
PackageVersion2.2
SHA-12822FEE84E88607AFC1A99A69F79D8F4EC33597E
SHA-256CFAD46FC4DCFC6378072CF7DACA58EF67E2543DD9811095AEEB60CFE25ACE37E
Key Value
MD519305293972222265DBF3DA72DFE4159
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython38-scspell3k
PackageRelease18.16
PackageVersion2.2
SHA-1E11B4772506489047C89059D9184693E2799AA51
SHA-256E1CBF65ACB1C236557E161D51B6944375126EC40629F08EFD72E3E209B3BC96C
Key Value
MD5B1AA3E06AC0CE45FCAAF2BAAEB56F35F
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython38-scspell3k
PackageRelease4.4
PackageVersion2.2
SHA-1775B79606B86AFA06D311FCE385AFB2A0704545A
SHA-25647DE9577129652A4B5BB88B1D9CC89FA05A3D6F7EB9FD6E3740C8F540B0EF596