Result for 15AD12CEC4FDBD3969BFFDEA2511001FA9C9A98B

Query result

Key Value
FileName./usr/lib64/R/library/LearnBayes/Meta/nsInfo.rds
FileSize451
MD56B677755E45FABBA2420C7FE3DEB20BA
SHA-115AD12CEC4FDBD3969BFFDEA2511001FA9C9A98B
SHA-256410C81204131F4FB6A8B60599F96B22AE75A1B81C7D2A2AD16A469B684541D58
SSDEEP12:X/LnuHmkdfZE0gDKGf7IkAO+4YKFJtKLZTBlC5L3:X/LZkdf1MKGskAO+4Yctq7YL
TLSHT11DF0239DA4DAAF01F2262439A3B73F3139107C31A3436F6F03467382969EA044D4B8E1
hashlookup:parent-total17
hashlookup:trust100

Network graph view

Parents (Total: 17)

The searched file hash is included in 17 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5375C60E11D97D8CB8BF61032A2BEFF6A
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageReleaselp152.2.6
PackageVersion2.15.1
SHA-102A686E3FFA30509C7C5088BC21AA5B2B1C8B656
SHA-2562AB0D5EE58D7D6C0C885AA4A6FE0751AE33B5DB98028CA44E55B479D04AD26BF
Key Value
MD564843E9F943287E02554A7A041208BBC
PackageArcharmv7hl
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.29
PackageVersion2.15.1
SHA-104A5D34A6594A62300818A4D7F3063117829F5E5
SHA-256D4F1383DF3A0AB9A41D6D8EF700A6D1A76BB788EFEE17B72C219328304BADEAE
Key Value
MD555CEF3040BB4E6587F6FDB54B3D61908
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.15
PackageVersion2.15.1
SHA-11397DA39611B19EA6EB03048B84CC60B7F18158D
SHA-256952589FE5D29AB560A461FF5D823F42022CA94EE54FEF6586CD29500B86068DC
Key Value
MD586418BF5A63DBDE56810F5760C162BFC
PackageArchi586
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.31
PackageVersion2.15.1
SHA-11FF3EB703FF5F059010D801B82C08FBCC20268F4
SHA-256B42334EA61BD9C45C383A7046AC9A34A4CB094AC0D19506301041EDB6B08675F
Key Value
MD551BEBBEF62A6EC58665B3CF8251DDDA0
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease2.24
PackageVersion2.15.1
SHA-12F410197AE466C911CEF2387901C9ACBD4BE4A49
SHA-256277315D4085F9F6BEDB5E96A6B183D352D4DCA52F0ECF23FB328A91554B29AAD
Key Value
MD5E28A09FBBF0B70292CDFBC8C425B365F
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageReleaselp151.1.12
PackageVersion2.15.1
SHA-13866BDFFBD03C0DE6496CC97A4632638D2B5EF72
SHA-2563198FB694FA693F89782B68883F6805D2367C145C44EF7FFBC004DBC571145A1
Key Value
MD5262A780CC035222BAA24361042771FED
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageReleaselp153.1.14
PackageVersion2.15.1
SHA-15DDD47D6BA887CA7AB2ADC2B167E771C88650597
SHA-25636D7B918F93244A8360F7F62C9B2EC8B10BF90F4C2F788A570ADA9791B1F8F18
Key Value
MD54702EDED0CACDAD0B9C77117ED13C423
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.6
PackageVersion2.15.1
SHA-15F1F4961C6C269CF85AD0C9163567C35301A006D
SHA-2567A57729829B4FBB4234E1F9F8D954D9E05B50169B5EE9A38E5B142DD7ADFED10
Key Value
MD5B685B913CD2C18A916FB45308DCC68A5
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.31
PackageVersion2.15.1
SHA-1668F26064F3AF757874499A0B4BA51E5B39E1224
SHA-2561A58DF996E307D77188BAE983899A6D320D6AA1CC3B3A50F63E80200F359EAE3
Key Value
MD5C09E4A7A977553F4E3F18E51F611D43F
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.12
PackageVersion2.15.1
SHA-166D1F0FED88EA321B40DABDBAC027B824E8785B5
SHA-256814D624DE8E0EC279DC329C061F14312132DAD4EB84F05BFB8B9D5EC75099399