Result for 1393CEE5812372D3DFA3A43D51C1D1CA11311DE8

Query result

Key Value
FileName./usr/lib/R/site-library/rms/help/aliases.rds
FileSize1971
MD5A6D1EC3163222DED96959138DD6D9C96
SHA-11393CEE5812372D3DFA3A43D51C1D1CA11311DE8
SHA-2568F0106295C30046D70A80951A524828FDCDF1E96BEB4B77DAA152583D8D0E84E
SSDEEP48:XwaXqp5BV8U0l7EgghdTeunsUmRA3vVRw:zqEUQ5gHTSUmW3vVC
TLSHT10F412A909A12978B615F98FE5A0B301D016952B278D136284D02AC3A657060CF78BFBC
hashlookup:parent-total10
hashlookup:trust100

Network graph view

Parents (Total: 10)

The searched file hash is included in 10 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize2106248
MD5EB74C1DBC0952D7809067EAEBB8ED8B8
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-1F8A4F096E9258BEC7DE21BFEB0867D41D36DBBE9
SHA-256C63116F18F0268F80469C9413495EB62F69593C62416F2B6506AB95D5D4493CB
Key Value
FileSize2107952
MD5CFA85711C54250DA0217B53D744347A7
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-15AB2F8C6307C95D3BEFA657AD5AA37F76941BF58
SHA-256A6CD545A82C8EC69E67223FBE30C95EB8EA901CC14F93C59614834A70CF08B72
Key Value
FileSize2107788
MD54FA25C54004278AA3505BD5E3625DEA5
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-1076EC31D45731C6939CBF86E46E9D66ED276137F
SHA-25655341F526DD60534D9B08E5097BF61E90A75D08164984D6BE474E848A9EEBD91
Key Value
FileSize2107560
MD5BE90EEE6C346C65F2B6916F17AD457A2
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-1C3EB01B0160C99180C788299F45C2E39BBCF23F8
SHA-2568D2F222BFC768C9C241347D887DCB90CE80164F8BD3EF00F9ADD7E4D9BE5702C
Key Value
FileSize2108152
MD5CFFE52CE3044B7909BFF94E7AC45A2EF
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-13F574E2C3FF07EC61E5260D112599B90F978E51E
SHA-2567B86073FD2AEC6620F32E340E6F3C0A445FFD4891B5E5A09863EA2395286A539
Key Value
FileSize2108124
MD5D205C7863531D3345CE4556A0ADD2530
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-1D53530C99D46B7B90B3C6A3D0F82FD7A8A47B736
SHA-256B441B7F5C5FED53312A136CF75EB337DB7A455A2BE0BA54D1062C8E53FE36C35
Key Value
FileSize2107864
MD50FFE21DC87D25C56A84BC9C5AC220B14
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-1538D9F26646180A525BD52377A909032C299483F
SHA-256F6F65D7CD57DBA441E58D4C304955BA026EBE19990ED5A5F19B195DBDF1F297E
Key Value
FileSize2108016
MD5214E43E40F0BA2DF36484649037C0D10
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-18CC3FD6A8351E2F94EA5E053C1C838A354FB0769
SHA-256CEDFED7F578532C5FA9DF1614D45CCAC8575342EA0098347CD158F0E287C0EDD
Key Value
FileSize2111092
MD55A0634A0DB0AFF3F20D7030EF8B3A2AB
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-113FF2DE29EEDAC6885E1CAFE003632A0C8940AA0
SHA-2568EF0CAC812036226771BD7198BD1D5D85A820EA392A4844B074DC3B41EA82F0F
Key Value
FileSize2106124
MD56FEEAE4A0A164668193AB6ED012B0C66
PackageDescriptionGNU R regression modeling strategies by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. rms is a collection of 229 functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression. . See Frank Harrell (2001), Regression Modeling Strategies, Springer Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamer-cran-rms
PackageSectiongnu-r
PackageVersion6.2-0-1
SHA-11F9151B69D7C334E87FE0EC291A201C5DD969F8E
SHA-256BBEA33679FD1AE9AEEDB6E2DB3EAFB030C5F14FC6EF746EEC92EF136B9554D59