Key | Value |
---|---|
FileName | usr/share/R/R/nspackloader.R |
FileSize | 1058 |
MD5 | D6C68F1FE41CED6E98A766A3757313DA |
RDS:package_id | 293685 |
SHA-1 | 12C0D3D6E3F5B5D749C93FECA122CBA34B466AB5 |
SHA-256 | 570CA456B280CDEB201EF5EBDF22DC8F80092E2C0C68E33C7F73340E420F3759 |
SHA-512 | 6824A8335BC36AF7808471FE603E2C4FC7B77BD08D61DF060B80444424563B0764DE87AAD8D6D20E926D02AA20E22528FFA8ED517AF5F35A01ACFA8BD2A90590 |
SSDEEP | 24:do2pvjejSRmcyAOkHjlnAgAcEWrwYahkB1OOV0Ea:d1jeuR5ysHju3cZVHC |
TLSH | T1FB1142886410D7FB6A0104853C4F22CDE31F6723729DA091300DD12F7B0DE7552F69D6 |
insert-timestamp | 1728198681.437601 |
mimetype | text/plain |
source | snap:VCjprGsSZiPuV3CmQViE4TvPMKTOlaiL_119 |
tar:gname | root |
tar:uname | root |
hashlookup:parent-total | 50791 |
hashlookup:trust | 100 |
The searched file hash is included in 50791 parent files which include package known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileSize | 3951520 |
MD5 | FD13684087C34948AC976DAE24B40A9B |
PackageDescription | Subclonal copy number and LOH prediction from whole genome sequencing Hidden Markov model to segment and predict regions of subclonal copy number alterations (CNA) and loss of heterozygosity (LOH), and estimate cellular prevalence of clonal clusters in tumour whole genome sequencing data. |
PackageMaintainer | Debian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net> |
PackageName | r-bioc-titancna |
PackageSection | gnu-r |
PackageVersion | 1.28.0-2 |
SHA-1 | 0003F184315C3FE37229EEC2DBDCBE7C922871AE |
SHA-256 | 0B8E04A60BC54400B3BC6B108B465D7B44A645CD6E51FEB3DC0010F664ADB793 |
Key | Value |
---|---|
MD5 | 733FB062F5D732F3AA27A56A1B4B1E43 |
PackageArch | i586 |
PackageDescription | This package provides an Rcmdr "plug-in" based on the time series functions. Contributors: G. Jay Kerns, John Fox, and Richard Heiberger. |
PackageName | R-RcmdrPlugin.epack |
PackageRelease | 2.719 |
PackageVersion | 1.2.5 |
SHA-1 | 00055353D103351AF898182ED6CE2D566AD306A0 |
SHA-256 | 92300CED467C1317DBB94A09B3EB5ED5F105AE4B2385C1B11360E2E8BE3887D0 |
Key | Value |
---|---|
MD5 | FCAD640A2759F9B6EB42E5FB9189CF52 |
PackageArch | i586 |
PackageDescription | A minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates, e.g. in the terminal using utils::txtProgressBar() or progress::progress_bar(), in a graphical user interface using utils::winProgressBar(), tcltk::tkProgressBar() or shiny::withProgress(), via the speakers using beep::beepr(), or on a file system via the size of a file. Anyone can add additional, customized, progression handlers. The 'progressr' package uses R's condition framework for signaling progress updated. Because of this, progress can be reported from almost anywhere in R, e.g. from classical for and while loops, from map-reduce APIs like the lapply() family of functions, 'purrr', 'plyr', and 'foreach'. It will also work with parallel processing via the 'future' framework, e.g. future.apply::future_lapply(), furrr::future_map(), and 'foreach' with 'doFuture'. The package is compatible with Shiny applications. |
PackageName | R-progressr |
PackageRelease | 1.27 |
PackageVersion | 0.6.0 |
SHA-1 | 0005B925FFF82B126F38E6F98CAD3EEFE1975561 |
SHA-256 | BB88235F254ED974367268A7D95945CDA7AB9A189EA7B0E3E74F2AA0485C47C5 |
Key | Value |
---|---|
MD5 | 5FE2371EC1FEB00EE9362CAED4CD5D6C |
PackageArch | x86_64 |
PackageDescription | Functions for testing if the covariance structure of 2-dimensional data (e.g. samples of surfaces X_i = X_i(s,t)) is separable, i.e. if covariance(X) = C_1 x C_2. A complete descriptions of the implemented tests can be found in the paper Aston, John A. D.; Pigoli, Davide; Tavakoli, Shahin. Tests for separability in nonparametric covariance operators of random surfaces. Ann. Statist. 45 (2017), no. 4, 1431--1461. <doi:10.1214/16-AOS1495> <https://projecteuclid.org/euclid.aos/1498636862> <arXiv:1505.02023>. |
PackageMaintainer | https://www.suse.com/ |
PackageName | R-covsep |
PackageRelease | lp154.2.1 |
PackageVersion | 1.1.0 |
SHA-1 | 0007A6C182BEBC16515D77D50E935418FDC369F1 |
SHA-256 | E5E02933498AEB520ADA9AB7D5E7908DAC678B1451BCD2AD965E235F878FDF41 |
Key | Value |
---|---|
MD5 | 27DEBB80C913C5021FE40D299BADE8E5 |
PackageArch | x86_64 |
PackageDescription | Provides methods for high-throughput adaptive immune receptor repertoire sequencing (AIRR-Seq; Rep-Seq) analysis. In particular, immunoglobulin (Ig) sequence lineage reconstruction, lineage topology analysis, diversity profiling, amino acid property analysis and gene usage. Citations: Gupta and Vander Heiden, et al (2017) <doi:10.1093/bioinformatics/btv359>, Stern, Yaari and Vander Heiden, et al (2014) <doi:10.1126/scitranslmed.3008879>. |
PackageName | R-alakazam |
PackageRelease | 3.35 |
PackageVersion | 1.0.2 |
SHA-1 | 0007FBFF83F49F4FB6F1EE69E816F2EC221CC26C |
SHA-256 | CA7168D4F6EE1323F4456EA15F7D84920D592618BD901DF35AF1E44BC3C6C38B |
Key | Value |
---|---|
MD5 | F078F652E6AF31C382FB8EC10CB61FFE |
PackageArch | aarch64 |
PackageDescription | Obtain the native stack trace and fuse it with R's stack trace for easier debugging of R packages with native code. |
PackageMaintainer | Fedora Project |
PackageName | R-winch |
PackageRelease | 1.fc34 |
PackageVersion | 0.0.5 |
SHA-1 | 0008488B3C2C9DF4FA6AB4F71551AEC8C48A514D |
SHA-256 | C3F1F36E4CA892EAF2BBB50D81497C1906391B561ACA0771D9A83159B853FDE0 |
Key | Value |
---|---|
MD5 | 48D6F0EF1AE8E561F7F5B6540BBAC1D1 |
PackageArch | x86_64 |
PackageDescription | Provides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both non linear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Benefits and features of the 'econet' package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Patacchini, and Leone Sciabolazza (2020). For additional details, see the vignette. |
PackageName | R-econet |
PackageRelease | lp154.2.1 |
PackageVersion | 0.1.94 |
SHA-1 | 000972A1F806D67429B5F164A146276B75851B14 |
SHA-256 | A5E5EC71E68CAE815B5759BD8E3B356C74736597C2E9F5DAD2DE93F9D71BAF7A |
Key | Value |
---|---|
MD5 | 96F101A9268EC58EDF785558BA149048 |
PackageArch | x86_64 |
PackageDescription | Implementation of the algorithm introduced in Shah, R. D. (2016) <http://www.jmlr.org/papers/volume17/13-515/13-515.pdf>. Data with thousands of predictors can be handled. The algorithm performs sequential Lasso fits on design matrices containing increasing sets of candidate interactions. Previous fits are used to greatly speed up subsequent fits so the algorithm is very efficient. |
PackageMaintainer | https://www.suse.com/ |
PackageName | R-LassoBacktracking |
PackageRelease | lp154.2.1 |
PackageVersion | 0.1.2 |
SHA-1 | 00098FB3933A291D2F4962355806959F77BE7F37 |
SHA-256 | FC538C14B1F6B3ACD1229797AF7E7E6C258E52476758EA74BC4C3FCFA39A3858 |
Key | Value |
---|---|
MD5 | 91661B8739218822AC5208C8CD93EF6B |
PackageArch | x86_64 |
PackageDescription | We provide a collection of statistical hypothesis testing procedures ranging from classical to modern methods for non-trivial settings such as high-dimensional scenario. For the general treatment of statistical hypothesis testing, see the book by Lehmann and Romano (2005) <doi:10.1007/0-387-27605-X>. |
PackageName | R-SHT |
PackageRelease | lp154.1.1 |
PackageVersion | 0.1.5 |
SHA-1 | 000B4C5237DD39D467EFFA07A0D170E86945EEF9 |
SHA-256 | 129082E104FE54A036B46F08A7A65F13DA6980540B4E3B7C03E88436440E1D5A |
Key | Value |
---|---|
MD5 | 1447BE44EDC955B78990944F93FB1627 |
PackageArch | x86_64 |
PackageDescription | To help you access, transform, analyze, and visualize 'ForestGEO' data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to easily import, filter, and modify 'ForestGEO' data. To learn more about 'ForestGEO' visit <https://forestgeo.si.edu/>. |
PackageName | R-fgeo.tool |
PackageRelease | 1.21 |
PackageVersion | 1.2.7 |
SHA-1 | 000BF6EDC3C19CD85D0AC87A1934A03853BB98E8 |
SHA-256 | E53924DD4F319ED1997AC3D198E03AC79DB4A2C16957CDC821205405CD6A6A42 |