Result for 12C0D3D6E3F5B5D749C93FECA122CBA34B466AB5

Query result

Key Value
FileNameusr/share/R/R/nspackloader.R
FileSize1058
MD5D6C68F1FE41CED6E98A766A3757313DA
RDS:package_id293685
SHA-112C0D3D6E3F5B5D749C93FECA122CBA34B466AB5
SHA-256570CA456B280CDEB201EF5EBDF22DC8F80092E2C0C68E33C7F73340E420F3759
SHA-5126824A8335BC36AF7808471FE603E2C4FC7B77BD08D61DF060B80444424563B0764DE87AAD8D6D20E926D02AA20E22528FFA8ED517AF5F35A01ACFA8BD2A90590
SSDEEP24:do2pvjejSRmcyAOkHjlnAgAcEWrwYahkB1OOV0Ea:d1jeuR5ysHju3cZVHC
TLSHT1FB1142886410D7FB6A0104853C4F22CDE31F6723729DA091300DD12F7B0DE7552F69D6
insert-timestamp1728198681.437601
mimetypetext/plain
sourcesnap:VCjprGsSZiPuV3CmQViE4TvPMKTOlaiL_119
tar:gnameroot
tar:unameroot
hashlookup:parent-total50791
hashlookup:trust100

Network graph view

Parents (Total: 50791)

The searched file hash is included in 50791 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize3951520
MD5FD13684087C34948AC976DAE24B40A9B
PackageDescriptionSubclonal copy number and LOH prediction from whole genome sequencing Hidden Markov model to segment and predict regions of subclonal copy number alterations (CNA) and loss of heterozygosity (LOH), and estimate cellular prevalence of clonal clusters in tumour whole genome sequencing data.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-bioc-titancna
PackageSectiongnu-r
PackageVersion1.28.0-2
SHA-10003F184315C3FE37229EEC2DBDCBE7C922871AE
SHA-2560B8E04A60BC54400B3BC6B108B465D7B44A645CD6E51FEB3DC0010F664ADB793
Key Value
MD5733FB062F5D732F3AA27A56A1B4B1E43
PackageArchi586
PackageDescriptionThis package provides an Rcmdr "plug-in" based on the time series functions. Contributors: G. Jay Kerns, John Fox, and Richard Heiberger.
PackageNameR-RcmdrPlugin.epack
PackageRelease2.719
PackageVersion1.2.5
SHA-100055353D103351AF898182ED6CE2D566AD306A0
SHA-25692300CED467C1317DBB94A09B3EB5ED5F105AE4B2385C1B11360E2E8BE3887D0
Key Value
MD5FCAD640A2759F9B6EB42E5FB9189CF52
PackageArchi586
PackageDescriptionA minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates, e.g. in the terminal using utils::txtProgressBar() or progress::progress_bar(), in a graphical user interface using utils::winProgressBar(), tcltk::tkProgressBar() or shiny::withProgress(), via the speakers using beep::beepr(), or on a file system via the size of a file. Anyone can add additional, customized, progression handlers. The 'progressr' package uses R's condition framework for signaling progress updated. Because of this, progress can be reported from almost anywhere in R, e.g. from classical for and while loops, from map-reduce APIs like the lapply() family of functions, 'purrr', 'plyr', and 'foreach'. It will also work with parallel processing via the 'future' framework, e.g. future.apply::future_lapply(), furrr::future_map(), and 'foreach' with 'doFuture'. The package is compatible with Shiny applications.
PackageNameR-progressr
PackageRelease1.27
PackageVersion0.6.0
SHA-10005B925FFF82B126F38E6F98CAD3EEFE1975561
SHA-256BB88235F254ED974367268A7D95945CDA7AB9A189EA7B0E3E74F2AA0485C47C5
Key Value
MD55FE2371EC1FEB00EE9362CAED4CD5D6C
PackageArchx86_64
PackageDescriptionFunctions for testing if the covariance structure of 2-dimensional data (e.g. samples of surfaces X_i = X_i(s,t)) is separable, i.e. if covariance(X) = C_1 x C_2. A complete descriptions of the implemented tests can be found in the paper Aston, John A. D.; Pigoli, Davide; Tavakoli, Shahin. Tests for separability in nonparametric covariance operators of random surfaces. Ann. Statist. 45 (2017), no. 4, 1431--1461. <doi:10.1214/16-AOS1495> <https://projecteuclid.org/euclid.aos/1498636862> <arXiv:1505.02023>.
PackageMaintainerhttps://www.suse.com/
PackageNameR-covsep
PackageReleaselp154.2.1
PackageVersion1.1.0
SHA-10007A6C182BEBC16515D77D50E935418FDC369F1
SHA-256E5E02933498AEB520ADA9AB7D5E7908DAC678B1451BCD2AD965E235F878FDF41
Key Value
MD527DEBB80C913C5021FE40D299BADE8E5
PackageArchx86_64
PackageDescriptionProvides methods for high-throughput adaptive immune receptor repertoire sequencing (AIRR-Seq; Rep-Seq) analysis. In particular, immunoglobulin (Ig) sequence lineage reconstruction, lineage topology analysis, diversity profiling, amino acid property analysis and gene usage. Citations: Gupta and Vander Heiden, et al (2017) <doi:10.1093/bioinformatics/btv359>, Stern, Yaari and Vander Heiden, et al (2014) <doi:10.1126/scitranslmed.3008879>.
PackageNameR-alakazam
PackageRelease3.35
PackageVersion1.0.2
SHA-10007FBFF83F49F4FB6F1EE69E816F2EC221CC26C
SHA-256CA7168D4F6EE1323F4456EA15F7D84920D592618BD901DF35AF1E44BC3C6C38B
Key Value
MD5F078F652E6AF31C382FB8EC10CB61FFE
PackageArchaarch64
PackageDescriptionObtain the native stack trace and fuse it with R's stack trace for easier debugging of R packages with native code.
PackageMaintainerFedora Project
PackageNameR-winch
PackageRelease1.fc34
PackageVersion0.0.5
SHA-10008488B3C2C9DF4FA6AB4F71551AEC8C48A514D
SHA-256C3F1F36E4CA892EAF2BBB50D81497C1906391B561ACA0771D9A83159B853FDE0
Key Value
MD548D6F0EF1AE8E561F7F5B6540BBAC1D1
PackageArchx86_64
PackageDescriptionProvides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both non linear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Benefits and features of the 'econet' package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Patacchini, and Leone Sciabolazza (2020). For additional details, see the vignette.
PackageNameR-econet
PackageReleaselp154.2.1
PackageVersion0.1.94
SHA-1000972A1F806D67429B5F164A146276B75851B14
SHA-256A5E5EC71E68CAE815B5759BD8E3B356C74736597C2E9F5DAD2DE93F9D71BAF7A
Key Value
MD596F101A9268EC58EDF785558BA149048
PackageArchx86_64
PackageDescriptionImplementation of the algorithm introduced in Shah, R. D. (2016) <http://www.jmlr.org/papers/volume17/13-515/13-515.pdf>. Data with thousands of predictors can be handled. The algorithm performs sequential Lasso fits on design matrices containing increasing sets of candidate interactions. Previous fits are used to greatly speed up subsequent fits so the algorithm is very efficient.
PackageMaintainerhttps://www.suse.com/
PackageNameR-LassoBacktracking
PackageReleaselp154.2.1
PackageVersion0.1.2
SHA-100098FB3933A291D2F4962355806959F77BE7F37
SHA-256FC538C14B1F6B3ACD1229797AF7E7E6C258E52476758EA74BC4C3FCFA39A3858
Key Value
MD591661B8739218822AC5208C8CD93EF6B
PackageArchx86_64
PackageDescriptionWe provide a collection of statistical hypothesis testing procedures ranging from classical to modern methods for non-trivial settings such as high-dimensional scenario. For the general treatment of statistical hypothesis testing, see the book by Lehmann and Romano (2005) <doi:10.1007/0-387-27605-X>.
PackageNameR-SHT
PackageReleaselp154.1.1
PackageVersion0.1.5
SHA-1000B4C5237DD39D467EFFA07A0D170E86945EEF9
SHA-256129082E104FE54A036B46F08A7A65F13DA6980540B4E3B7C03E88436440E1D5A
Key Value
MD51447BE44EDC955B78990944F93FB1627
PackageArchx86_64
PackageDescriptionTo help you access, transform, analyze, and visualize 'ForestGEO' data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to easily import, filter, and modify 'ForestGEO' data. To learn more about 'ForestGEO' visit <https://forestgeo.si.edu/>.
PackageNameR-fgeo.tool
PackageRelease1.21
PackageVersion1.2.7
SHA-1000BF6EDC3C19CD85D0AC87A1934A03853BB98E8
SHA-256E53924DD4F319ED1997AC3D198E03AC79DB4A2C16957CDC821205405CD6A6A42