Result for 114CAB558008CD93F2E37638884B1CBA6307223C

Query result

Key Value
FileName./usr/lib/R/site-library/party/data/Rdata.rdb
FileSize3537
MD537F7FCE6DE798481E4A5861D07C71350
SHA-1114CAB558008CD93F2E37638884B1CBA6307223C
SHA-256C767A5B7FC99F62F426E078CD6D10917488664D031E2EDA269E0727D0F6C88F2
SSDEEP96:q7439c0tJxdNuozMpwheRcdpNxoMKLntrkmWuYdDRzufQl:qOc0tJxTuoDe6vNCLnFkpuYdNufq
TLSHT18A715D42C88C3E03AEDF7E75F27C5648379B5CA2E154849B885DED93E88A22E440784B
hashlookup:parent-total9
hashlookup:trust95

Network graph view

Parents (Total: 9)

The searched file hash is included in 9 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize1133224
MD53183036710F01F60E546F36855302F52
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-15B65F7212B83829E135737D5582AB1E3295E3D76
SHA-256DCCF2CA6F71C546A95694CD2E6B056A7ED0B47D2F13BDBD9F31DE5DFEF8CEC6D
Key Value
FileSize1123612
MD539B7DD9BAED97CF9DF4C69523F72D8D8
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-1966F4D591EA289090D9D48175D2C989051B4686E
SHA-256930CF21D27694A2D1F8EB9472ABECE3231C8971A5CD98323885B453825BBFBD9
Key Value
FileSize1125056
MD5F5EF1E391DE443A3CAD4D5FABC05C80F
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-13BC563215E582514241FB890BFC487C4577494B0
SHA-256129054A8E5F81BAEB4D75F69D22598CA802BB1DD63974CB948E844FC53E38419
Key Value
FileSize1121624
MD5A7E26CDE5A7C0AC5F9B89A52500ED722
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-13C8423F464F92A7F528F100312D9B888D34BEB12
SHA-2562C74C31BE18ECB0AE6830422AAD22E1DB0B9D7E25E1DEA88F829CFB1A99155FD
Key Value
FileSize1128664
MD500525CADC3B7101D9BE87E521D5F658A
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-1E84855F81179ACD5222F5D897F2B73EB5ED21096
SHA-2567E78F14ABA56B5CAB5AA9A7CDBD17638DEAC06AE827635D534CEF4C3FBBEE1F5
Key Value
FileSize1121744
MD58F3ED2CACAA9D148C17A011465D73C07
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-1F28244FAA11164F3C9BB97BCA25F19B8E1BCDC3C
SHA-25607446BF69E81BE72D4DA138837C3298BE9B2AF3B7379B3814AC373C44012E945
Key Value
FileSize1126716
MD52EB41D1A84C9F14E0F2ED68FCDB0E257
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-14AA858BE406B3CDE36477ED47D987860E2259171
SHA-256226FAAF6F2A52DF0BF5C3938247FEBD21EA97E9BA3A843901ABA1CCB48ABF9F5
Key Value
FileSize1131144
MD53175E79514C0719E63BB488438B56A3E
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-185272FB41B3E31B3D95541C482EBD0E60E52E4E0
SHA-25682BD0D347228F76BCCB5C241D385BF85C82A3CFA398B045357F654EE852DFA3F
Key Value
FileSize1122124
MD5568E2077250208E7675FDE0D04706FBF
PackageDescriptionGNU R laboratory for recursive partytioning A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-party
PackageSectiongnu-r
PackageVersion1.3-9-1
SHA-14139BFBA3AD16717DEEB8575C0AD37487B913570
SHA-256616D18F3D416A52727631264A9C993A9ED95B34C413D5BCC670A4F08CAE27A22