Result for 0B3864D019DF47442D3D5861AB4C7F5738470A25

Query result

Key Value
FileName./usr/share/dart/cmake/dart_external-imguiTargets-relwithdebinfo.cmake
FileSize967
MD591AC49130657996EED598471C7870C39
SHA-10B3864D019DF47442D3D5861AB4C7F5738470A25
SHA-256241E8BBEBDC494A1E71E9ECE2AEB112C10205D7B5660443F8A24F77B46779F49
SSDEEP24:x3m7dS0qUMYA/lfUTQgIl5i7+w+OhNrNc7+FyjUu:FJUMrihe/Uu
TLSHT13011AF638F9509B7014BFC91B4809652C225D3BBF77F6DAE028C139E219065E154FC0F
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize143840
MD5A01B8C9424A260D8BEFC29B798A3E432
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains imgui headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-imgui-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b1
SHA-1FE892AC4FF2679637204736C2148FCEF06B4D41A
SHA-256FF3FAD073203E1F229BB75549C5E74B25335EC6CF67BE5B62073A352111D4FCE
Key Value
FileSize143776
MD597A1D70E3B5C04AC288CF9560318A3E1
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains imgui headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-imgui-dev
PackageSectionlibdevel
PackageVersion6.9.2-2+b1
SHA-11EB92180E603F98AA73DF95D243F488885DB87D7
SHA-256394D83D3379DC8C8AB030F1C3A4ACECD1C99746D7BA77614DC91A46B35A0B3FC
Key Value
FileSize143828
MD5DADCE052864F4CBB8840AD1E7C490FD8
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains imgui headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-imgui-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b2
SHA-169D5AF8F70E953317B8ADF9AB9E09519FF8EF4F7
SHA-2563E2D4EBE5ADF312006B7839AA1167FF294F613A1D702CBB616FB2A02B201351C