Result for 090DB93DEDA4A08CDDD692E451C14239815B7C2B

Query result

Key Value
FileName./usr/lib/python3/dist-packages/pycuda/tools.py
FileSize14443
MD511604629263FD694CC57038495717743
SHA-1090DB93DEDA4A08CDDD692E451C14239815B7C2B
SHA-2566CAF132A5536EFE6846CE65E6A83C2033F6E303893F1D9DC41498CAC58D11658
SSDEEP384:PcCWF09OzP3rEuhIVStfxUY0HTZVVJfGa+:kBF063rEuhKStfxUYA/VJfGa+
TLSHT1B052C65E3852A422A343D96D4CC3F003A36BAE57594C3970F8ECA1643F95265C2F9FE9
tar:gnameroot
tar:unameroot
hashlookup:parent-total5
hashlookup:trust75

Network graph view

Parents (Total: 5)

The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileNamehttp://archlinux.mirror.root.lu//pool//community//python-pycuda-2020.1-5-x86_64.pkg.tar.zst
MD5066B2489BB478F95D4F682D742C55620
SHA-182BED4CFF8F89EB63CAB66EC201C1443734FDC43
SHA-256C645148D1025A142BA25054DF385CC9EEAE4E9300340164BAC34D362FE1B67C2
SSDEEP12288:tGz5AWvkiCzEPJybGXpqhLvF6MxG/NovAAC:tG1VvkiGEPJyqZivF6NMAAC
TLSHT1198423FA4EE45BB6BA1988B030F24FAC3C3F3058ED14ACA78B21566427977478B13557
Key Value
FileSize322664
MD58101243AA5186EE90F7211228EFAFA77
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2020.1~dfsg1-1
SHA-1D952B9E29089EFAFA846DEC00E7082ADD146A4F0
SHA-25684F08C60CF419A15F89DE1FEDA50FEEB173C4DEE1CDD4C1150231863F0824AEC
Key Value
FileNamehttp://archlinux.mirror.root.lu//pool//community//python-pycuda-2020.1-6-x86_64.pkg.tar.zst
MD560357CE38064ED1090E149D3D799405F
SHA-18755DF05EE71BB9BBB706F12E09F59F92A7CBFEF
SHA-2569F506406F63A49A378610EC5FDBEE231A355D26A248995B0BB6986E1441CDB5A
SSDEEP12288:iXx4F958xZrpCksgo3tmBF3Qlca/WtQWxYMf0K:ex4FIvrJfBBF3QCYwQQdz
TLSHT11A84233F940FC49AE3965D8C1538EBEBC37402E22D97A14172AE559CADC1543CE86DBC
Key Value
FileSize290192
MD556CCEB4D76564A4B3461A7FF24960D44
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2020.1~dfsg1-1build1
SHA-1F3C6FBC07D9AC130D1196A11DD4D50F87B88B646
SHA-2563247C5A79A72E2091CF28CB1719117D5B1E21D628C894289723B71FEBD6990CF
Key Value
FileSize324172
MD595571647075E84C6DEAE2BF9F998EAE1
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2020.1~dfsg1-1
SHA-16D7B76D4A0C3460CDB396C06BCAF2B7BE741D316
SHA-256EE0DD23354FC91FF5644058F857FA3492331625C53180DE417FE4863AABD9556