Result for 0869CCD2C3E60DC68F9CDA136503D590E10CF742

Query result

Key Value
FileName./usr/share/doc/python3-dartpy/changelog.Debian.gz
FileSize2502
MD5F9640A98E4CF1C855510C9986F6D0514
SHA-10869CCD2C3E60DC68F9CDA136503D590E10CF742
SHA-256E44A384E4AB4E31A07FB0C874D66967031D4E42576947CDFF32E173790B03937
SSDEEP48:X5jdfBJTjkVwwsNIPcKq9MjDuXJrdkZRxUWk3+AP2YTikNMkEjsVRSsCb:ppj3kVwTKk39M/+rsuPJJiMVO
TLSHT1B0514C5B52CF87ECD9C5CF23D6B43881EC89BA920A1312630809D19995FC439BEE7607
hashlookup:parent-total225
hashlookup:trust100

Network graph view

Parents (Total: 225)

The searched file hash is included in 225 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize80528
MD57C14BC7ABBB6911DF1C36D95214921A6
PackageDescriptionDynamic Animation and Robotics Toolkit - Utils URDF Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the Utils URDF library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11
SHA-10183413DDC0A9AFCBDA64B530BD74E00CF515FE6
SHA-256628BE9C2C406B784E07E3A108CE625E03923747D0AA5714FDDAD4A81560B69E7
Key Value
FileSize47076
MD5CF79F6C2BF4C6E5D50AB8D44AA23154D
PackageDescriptionKinematics Dynamics and Optimization Library - lodepng dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains lodepng headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-lodepng-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11
SHA-10284B2D0A065724C9DFE4069C1A5C5EA4040CEA6
SHA-256630B4A622D50AECC41579F0BB85F18D400A142E78C0F85C8EFB3ED013ACFDEF8
Key Value
FileSize70384
MD5A7D910BD36280CD5065BEEB765EB94EB
PackageDescriptionDynamic Animation and Robotics Toolkit - Utils URDF Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the Utils URDF library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11
SHA-1031B5BB6CE71B78B9E76D75071D0305BD4DB2713
SHA-2568F52385A1EFDA25226778B30224A58304AD33526B969E4B9B2D5DE1607069285
Key Value
FileSize293936
MD5ABE598753A2F27B39493658D612C9A73
PackageDescriptionKinematics Dynamics and Optimization Library - utils library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the DART utils library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11
SHA-10585487B51C757C548DCB5E192D881086AAD6B37
SHA-256D17871206E66BC5B4DE385CE58BE3F5F5D54AC68D9B208FDD503AE772315664A
Key Value
FileSize63704
MD5D03F04E61F47580FB26B457A21052ACD
PackageDescriptionKinematics Dynamics and Optimization Library - lodepng lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the lodepng library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-lodepng6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11
SHA-105C744DC8F19903DB2F6D1D18740B681B3565CF3
SHA-256298A855C6C29C417E09AA332A78A46092476130ABA52CDC0401B13CAB757FCE8
Key Value
FileSize207700
MD519E96C1CE2DE03B7DB05CA42C3B251FB
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the GUI OpenSceneGraph optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11
SHA-105EFD1BFD4B97F1370BE3D287850FCE939856E5F
SHA-2560EFF6594565CDF40496350E16B87DBA328A0AEDF4F5CCE8F417103D2F0FE1C66
Key Value
FileSize37500
MD5282AAB77A5997F2C909502FA540AC708
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the NLOPT optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11
SHA-10611B651B50D2B553E07EDCA6FF5BE8CBB5756FD
SHA-256A22531E2A70228B61DE59FB228BC8FF2CC1511ABDF44461E9A8055D205F692B8
Key Value
FileSize30292
MD59EFB63DCEFBA1065931DE67AEE51EF52
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11
SHA-109476C276681E9083A058074B9FA20FAB0972553
SHA-2560DF01517BB952E30C26465E1F8B43FA0DE3391C3D9D094EA7C90A0911DCF468D
Key Value
FileSize219224
MD5AD656E900364640AE52B290700B09880
PackageDescriptionKinematics Dynamics and Optimization Library - development files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11
SHA-10974E6AF605C65B98287B45598624975CB22416D
SHA-25690EEDBD089618481BCC9249C1B9CA3620B847D958A609D74C4825A6A543B648C
Key Value
FileSize28092
MD596D44C434496B493A59A89465F0055A5
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains IPOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11
SHA-10FD67AE9D4D4A7195692DC48949CF01E481CC7F3
SHA-25695690135BE274A5D12EBB71FEDF730A7252DA83A5B5A823F726E8D475D30497B