Result for 06CDA5BBA8FA3F23778D5C390B8D5025989C7662

Query result

Key Value
FileName./usr/lib64/R/library/party/Meta/demo.rds
FileSize165
MD544A2CC7E81FC2C2909CAB6638DBAAEDC
SHA-106CDA5BBA8FA3F23778D5C390B8D5025989C7662
SHA-256EAD8529A8AB5FAC6AC14EACBE274D22CF7EB40F09D080C8E7824BB84FABCDE6D
SSDEEP3:FttVFD/EWOjf9hdpp7BDtG8FYy6x/YXR7AFY1wJOFPiWMjuz:XtVFDjOJhnYzx/DY18O1iuz
TLSHT11CC080F15741736ED62044241551432C508CC440D6D545167115006059B52514557FBC
hashlookup:parent-total17
hashlookup:trust100

Network graph view

Parents (Total: 17)

The searched file hash is included in 17 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD55E8AE91AC500978B9008AE313FD63B2E
PackageArchi586
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available.
PackageNameR-party
PackageRelease2.237
PackageVersion1.0_17
SHA-114E853F11B100F7C4ABFCEB24901C3E6A9451E2A
SHA-256F29A270B3BB402E0EDA197C2A8E6FA4A13987B43A0B1637B2D5627E6CE32E0BB
Key Value
MD54BD28BD3BC92E16935B649677410CE56
PackageArchx86_64
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageNameR-party
PackageRelease1.7
PackageVersion1.3.9
SHA-11E223784871ADC168F2A715B90D3DE0038F80038
SHA-2561207687EEDB01594E798F2878560ECDF8741D99DCD1976967422EB8D3EC01E8F
Key Value
MD579524F0ED28AC4F46FCB33577A86FFA4
PackageArchx86_64
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available.
PackageNameR-party
PackageReleaselp153.2.12
PackageVersion1.0_17
SHA-124BB30BE1CE7977CCB97AD6DF0BA112CB0DD13B2
SHA-256F44B41AD247FCB385E85460B9ECBA743F2107D685AF2977922C5D1B4D759AB0D
Key Value
MD5807DAAA7F41802D653CEFEA595AC6832
PackageArchx86_64
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available.
PackageNameR-party
PackageRelease2.27
PackageVersion1.0_17
SHA-1386341E1940CE74D89717A723EB4E81FF41C0265
SHA-256E7FAC464946CBC8D35577A74052BC7485B64A668ED8EFC86B6025D03A8607795
Key Value
MD50A7E6BB4C7AA1FB5001D84A763675717
PackageArchx86_64
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageNameR-party
PackageReleaselp153.1.2
PackageVersion1.3.9
SHA-138DAA0745CEBB5CDF16D67DFEBE310B8E9915D8E
SHA-25635DC8C0DA315052D1E246E39C58FE31638C283486BCBA1F88F6839E3D65080AA
Key Value
MD5D1D6722A21769A3E80A2B23A5E449E86
PackageArchx86_64
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) <doi:10.1198/106186006X133933>, Zeileis et al. (2008) <doi:10.1198/106186008X319331> and Strobl et al. (2007) <doi:10.1186/1471-2105-8-25>.
PackageNameR-party
PackageReleaselp154.1.1
PackageVersion1.3.9
SHA-143AD04630C57656B018C8ECE7CA23579B02A32FD
SHA-256A925B76A44B0FDC2D6812F6A7049C3DFB09CF0983F6CD85C4823F6A9AC3BFA77
Key Value
MD586DD76524893FBB2919BEB4651905A5A
PackageArchx86_64
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available.
PackageNameR-party
PackageRelease2.16
PackageVersion1.0_17
SHA-148D273EEC8CE7E3F37639450B36278C3EBD61798
SHA-25622547B8AACA9E920B5D007B0E41E3E6ABD8449FE0EC7AB1E973C86A06012A6DE
Key Value
MD5FF27E6B1ECF590EAC437FF28AB252376
PackageArchx86_64
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available.
PackageNameR-party
PackageReleaselp151.2.58
PackageVersion1.0_17
SHA-1511475C7247778897F6B53926C43759DF29C7243
SHA-2567D7F3714F458DDD5C6CB083F2445B030D5BB89A969D6B512D0A1800D11D31EE2
Key Value
MD5511BEE050AB20DF591E06AF38B3F4978
PackageArchi586
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available.
PackageNameR-party
PackageRelease2.237
PackageVersion1.0_17
SHA-15216A9CE65D2D5F047DA850A42A8F3266F69247C
SHA-2561C1E6F418AE21EC3B0E1AD072288004940607B9C8695FAC6B49F91C3AD01AEE9
Key Value
MD57739C3E1F464078730251EBD84F826AD
PackageArchx86_64
PackageDescriptionA computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available.
PackageNameR-party
PackageReleaselp152.2.14
PackageVersion1.0_17
SHA-17F191CA0E47F4E6BB2351F64F025C844C2387E88
SHA-2564353AD00F9A5AF72B9A0839BD4C9469B970AE07EC3EBE19E5E08C079C6BC6C81