Key | Value |
---|---|
FileName | ./usr/lib/python3.8/site-packages/joblib/test/__pycache__/test_numpy_pickle_compat.cpython-38.opt-1.pyc |
FileSize | 669 |
MD5 | 48B13EA1ED2DC0BCB26077B6F4C2D3DF |
SHA-1 | 061AA1D4B5ADC47BEAFCFEEB569CDDA92C17408B |
SHA-256 | 6B78160A01866484FDC45C0242510A3B0EBDBFB150C4521A6415687528556297 |
SSDEEP | 12:qXABcKSUyOx43Bw+7Bfhxw7qse4ykNu/Qwm/04F6W4kiZqqI:qhRDGAQwD4FBUqqI |
TLSH | T13A0162C4D40A20F1F268B335C198863EF332FB69080265256B24EEF71DD3100A5E151C |
hashlookup:parent-total | 9 |
hashlookup:trust | 95 |
The searched file hash is included in 9 parent files which include package known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
MD5 | FEA5FFC816FAE6B283D655324732C1C9 |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageName | python38-joblib |
PackageRelease | 47.4 |
PackageVersion | 1.1.0 |
SHA-1 | 696EDAF3CB785E8CDCC3EAED1EA1000EB5682EA8 |
SHA-256 | AEB27F5A31F862158FA2CDBA5E56D845C670812F4D4CFD55B1ABA9A2A2CD57E0 |
Key | Value |
---|---|
MD5 | CF19860A2691086994023DE3FF20948A |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageName | python38-joblib |
PackageRelease | 47.22 |
PackageVersion | 1.1.0 |
SHA-1 | 83605C0F1456F2C4E0E5D0F05F76A3641B5C7CA6 |
SHA-256 | BB0CB6887E3EB56452B1DFEFCEDE2DC954D874DB4D0734339463783AD17515F7 |
Key | Value |
---|---|
MD5 | 2591DE615341DE55B0BF10D053DD3064 |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageMaintainer | https://bugs.opensuse.org |
PackageName | python38-joblib |
PackageRelease | 1.3 |
PackageVersion | 1.1.0 |
SHA-1 | 012BB971C7C22F6C6F18A8E03EB523B9F482A4E0 |
SHA-256 | 2A4821842E3B8E92A139BA62BBC59F7BBB2020DE16C46E9ED0CA11CCAF78E13C |
Key | Value |
---|---|
MD5 | 3D9168F133A7BDD8C73C646756B6C3FB |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageName | python38-joblib |
PackageRelease | 47.21 |
PackageVersion | 1.1.0 |
SHA-1 | E16AC1422D5C820C8ACC160C32DCFEE0B107DFA5 |
SHA-256 | ED6234D3128555B24EC41E6DCC0D0ED4BB2DB131D4BEAEDA1247447B4B09F5BA |
Key | Value |
---|---|
MD5 | 331360F553CD59DABC00CFF7A433A50E |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageName | python3-joblib |
PackageRelease | 2.5 |
PackageVersion | 0.14.1 |
SHA-1 | 0E517C072C1D2AA8F59D9590CE738A8FD7DCDA27 |
SHA-256 | 1239B403E5489D267091A3C4B3ED37CC37652DAD3F396F7200D8576BC638AC9B |
Key | Value |
---|---|
MD5 | 3F8F5A833AF82D7EA9A1D56633F443F3 |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageName | python38-joblib |
PackageRelease | 47.7 |
PackageVersion | 1.1.0 |
SHA-1 | 3D5FA39FE982935A335C3BC418CFF59EAD0C5F0E |
SHA-256 | A07C59E53BA4282A72F9CD7C4E29C33A728A508FB6F1C8370A9AA12690801551 |
Key | Value |
---|---|
MD5 | 568636889C185C6A9B4D12DE70531552 |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageName | python38-joblib |
PackageRelease | 47.14 |
PackageVersion | 1.1.0 |
SHA-1 | F429C1B90A327512462B38785419676661809C61 |
SHA-256 | 564A89E542FF0A87197B0DD81968E90567799D7F6D30209DAAC4052E0B987D18 |
Key | Value |
---|---|
MD5 | 41441B94BB3A0380D5C6DD5BE1901F95 |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageName | python38-joblib |
PackageRelease | 47.3 |
PackageVersion | 1.1.0 |
SHA-1 | 9D4FF30DAACBCACF9B1EE1B74CE333202840C42B |
SHA-256 | 027F14E551A105A67CCC98B5B49F4E539C70213F9AFEAD3FEDE3A1EE499E9168 |
Key | Value |
---|---|
MD5 | 64564528F238F4E5227235B228F6AC28 |
PackageArch | noarch |
PackageDescription | Joblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays. |
PackageName | python38-joblib |
PackageRelease | 1.2 |
PackageVersion | 1.0.1 |
SHA-1 | 83E196A02D4040C9F40A7525F685CE5CB2ADF0C7 |
SHA-256 | D53863F426263F41647FD217A03D8B9C65F0BC0FBCD529309608C107D215750E |