Result for 05E946B0602A6C97BD6E0018F25EFD08F63808C9

Query result

Key Value
FileName./usr/lib/python3.6/site-packages/joblib/__pycache__/_dask.cpython-36.pyc
FileSize10521
MD54640F79E237E07963A9D456156F84983
SHA-105E946B0602A6C97BD6E0018F25EFD08F63808C9
SHA-256037F7CA8FAB07952400007B66229E886ED7D8FC14E769510AFD1076F780E22F5
SSDEEP192:AXBcoy9YhaSOGzuxDY2mSmbdC5KUZZXxuYeHaaLWchMbNK:AMfb7UlpC5KUZBxTSacWchMBK
TLSHT1A722B4B66701EF3AFE75F7F4903E832C5675962B231F91261808D16D0E4E3C45C79A85
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5712ECB5F2A6B85431CB01ADAF04511CD
PackageArchnoarch
PackageDescriptionJoblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays.
PackageNamepython36-joblib
PackageRelease1.2
PackageVersion1.0.1
SHA-150C0933302AB188C2A94DF48CC84F644C20FDDD4
SHA-2566357C19FB24EA081D8806AADA4317E74437DBCE4D66E99F6B9B6C7B6D96C5401
Key Value
MD5C38649696A03E95D5C99CD42D92D5D08
PackageArchnoarch
PackageDescriptionJoblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays.
PackageNamepython3-joblib
PackageRelease46.2
PackageVersion1.0.1
SHA-15648C9250F517D014A349481F25A9F8367913DB5
SHA-25602A32E148AA508F2A2175D560BDED2544EE6A51C0E17C254F8CB923CFA4ED094
Key Value
MD5134596EDFE434BE67DA1D95860E0E55A
PackageArchnoarch
PackageDescriptionJoblib is a set of tools to provide lightweight pipelining in Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. parallel computing 3. logging and tracing of the execution Joblib can handle large data and has specific optimizations for `numpy` arrays.
PackageNamepython3-joblib
PackageReleaselp151.2.1
PackageVersion1.0.1
SHA-1BD864DC037637BDBCCF166F7BD98F74ECE738D65
SHA-2562DA978841D968273830DC3DA6BFFAEDFB3E6E72264BE99AAA0092A1FE562C927