Result for 05DE852A3444E0F4D40BD408A80C242296500A35

Query result

Key Value
FileName./usr/lib/R/site-library/qtl/INDEX
FileSize14902
MD560EE884D9247C53B3D1AF9BBBA2D7A38
SHA-105DE852A3444E0F4D40BD408A80C242296500A35
SHA-256C0AAE9304677DF168F374CA7F0D93D4F6BB0E3666B1C5D44E5445DC40B8BC79E
SSDEEP384:0FbaqQHDIR+crhc/s6tHssRkqt08cGi9JJbyyzpRRX9ocv1565Yr:0tapHDIRNmhssRksncGi9Tby+3H10q
TLSHT1D56254B13714123942D7478E5B7D0A80F63C96623B901D42769F82BD5F83A9E967CBC8
hashlookup:parent-total13
hashlookup:trust100

Network graph view

Parents (Total: 13)

The searched file hash is included in 13 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD58AA375571B8D05742EDAA1B631A40A4E
PackageArchs390
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc19
PackageVersion1.27.10
SHA-18241366671937FD3C926B963BA436B451EF8F0DB
SHA-256E98B2FCAF8D54CD2E04253A77ABEA170313E9C3CA7253EE197275CCDDC7AC111
Key Value
MD5F8FF9D599712F47E1D756F57454E58C1
PackageArchppc
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc19
PackageVersion1.27.10
SHA-176C8F6686B2798FDA20F9593E4F4CCFD2DF00870
SHA-256DE0D2E5B06B005A759A460D89BC41A721E8D70D0B44AE9ED03A0B5C683944F01
Key Value
FileSize4076788
MD55DC9592A5A297E575744E0E854D23702
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms were implemented, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.27-10-1
SHA-104B33AD1689247407376A95D5A325F07047C266C
SHA-25693CF1870DE7169A8D627DCE20994EF6DD138F0C8F86D1ED764A1D3570B3D9921
Key Value
MD54556758565C1119A043293E1B5DEB650
PackageArchs390x
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc18
PackageVersion1.25.15
SHA-18865065045336E004CE5318C665B6D7DA2C5F392
SHA-2563D7B68B99C9B7EBC86884630E00054AF14E44AA3EDE262E2417194CEB139670C
Key Value
MD5C29BDA23E8E80DE251360E6BBCCD488E
PackageArchppc64
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerKoji
PackageNameR-qtl
PackageRelease1.fc18
PackageVersion1.25.15
SHA-1B45DC4DE50BE279492A90BBDF81EDDAA46B9ED66
SHA-256E719C40E63383612F843B98F4DBFD4532AFDE7CDE5762AFC92D1F2CBB1A978CB
Key Value
MD5BC78BAD424A06A215645713F76679F58
PackageArchppc
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerKoji
PackageNameR-qtl
PackageRelease1.fc18
PackageVersion1.25.15
SHA-1F8E334E922C919F6EEB4678E4D7F20117FA89878
SHA-2563F124B053261067976917CE97ADBAB6BFDF3C3439A9F914D94818B5A39846ADB
Key Value
MD57CCC28A36E0BF8D88BB4DD3259D37EB2
PackageArcharmv7hl
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc18
PackageVersion1.25.15
SHA-1B5B1CB57ED65E958EE0F8E27D88F1B5660B38F1B
SHA-2568767B1A10245F369AE193A55E1A652762BA1C59FAEB3940F992EEEF788F6E68F
Key Value
MD5C1731B51EB29EC42BF71387271CDA8A5
PackageArchs390
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc18
PackageVersion1.25.15
SHA-1D26199F3C04AD9833852309DF85A7CEEF6C73EFE
SHA-256F827652F344A2C4B306AC8E2D140D85479816D67B963D56BFFD4D01532A0C598
Key Value
MD5117D94891F9669A6C60D13D8259AA3AF
PackageArcharmv5tel
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc18
PackageVersion1.25.15
SHA-127EB78355F26D8DA082263A46AF35F362E0B4571
SHA-256FC8637422CDAC4E5EE36AF1255DD21F39DB324FA989A18D57E9198502C3AFB4F
Key Value
MD50FD9B232FAEBB05129E43678A2894768
PackageArchppc64
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc19
PackageVersion1.27.10
SHA-1833A30F5365D7150CB332A65B40CBBAE6CC82E07
SHA-256D0BF358C98AB8D559EF12D26EA71DDC2D13718E063F45220390231C92384DBA8
Key Value
MD5A869EEAB6C9BC87258C65508331029C5
PackageArcharmv7hl
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc19
PackageVersion1.27.10
SHA-1E183771F6A910C7260697F48F4E786422FA822BF
SHA-256A761983ED6BF8750CDB6E8FB26D7A8F2261E4FAAFA98B1D33F5C8190CE3FF1B1
Key Value
MD50D15A653CE776D1DFF48DD5F1B1DF267
PackageArchs390x
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc19
PackageVersion1.27.10
SHA-124A8E3A68598CAC1CA173E5D84342A69E0E8CE7A
SHA-256069AD59DFAE9C8D100B7A13B600CD0DE8E098156DAC4A59B93E806E5713239F1
Key Value
FileSize4046320
MD580FA07D1D375927C9BB5BA52810C2B13
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms were implemented, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.27-10-1
SHA-12B998786CAEA8ACCB92EFDFC36C8979585649566
SHA-2564245A7C59F4640269FDCA264F5434D901D6823B0CEA98F1A164049B4C7A36B3D