Result for 05ABF048885130EC320864D2DC8518FB1A463611

Query result

Key Value
FileName./usr/lib/python3.8/site-packages/seaborn/__pycache__/axisgrid.cpython-38.pyc
FileSize59566
MD58FC309E45EE077496BD0FCED34416114
SHA-105ABF048885130EC320864D2DC8518FB1A463611
SHA-25656496ADA0B743F7A558FAF1C5504BD25F2DFCEFB5BAD720AE0FCC919BE0B7A1E
SSDEEP1536:f4VYZrCDzYVa+iseXvWkVMo+I60Er5vIQ:QmrgzYgPpWkg6Q
TLSHT179435C4E7E312FA7FF67F2BA40AD5250E520912B33916506B8CCC28D2F1199C9C7D6DA
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5CD8574FF26C641B63B736B6A5417C3BD
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.13
PackageVersion0.11.1
SHA-1BBB01FED02FB48C0221A33F404AEA342B099B79A
SHA-25630AA757CD7A14E5EE502B1FBE8D5EC4F945F443CE4964C4924B7A8FD98273EAE
Key Value
MD58D7D0069B446A5556E87764BC9304C7B
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.27
PackageVersion0.11.1
SHA-1B7DE7A02FE65B9B85CC03286F5F10F3F30FE8E56
SHA-2565C3AE53C87B1F421A444E0CB389DE66548E7DCDD0CBCC9126F661D04FC43F277