Result for 0575D62E42C0BD98F30FA8B284D570D311DA2E77

Query result

Key Value
FileName./usr/lib64/R/library/qtl/html/clean.cross.html
FileSize1829
MD51B50A3D457E29E39CB8C259C204F2518
SHA-10575D62E42C0BD98F30FA8B284D570D311DA2E77
SHA-2561B3F881BD2AE5B4A9E43141378ADEC76221EC31166BAFFB1CDB3FB715A08832C
SSDEEP48:IpbseU3JDz4ZF5HVaxobN2NMUKUk8kw07zxR2RVMQV1uEzY7p:lePZ/HVYoJ0MUvif7zn1EMV
TLSHT12C312584C6C30A47840783AEAF426D9C7DFF4362D56C25C01C97E709DA81A79A626B1F
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD56181CBB002330F86AF7226A701DFD63A
PackageArchi386
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.el4
PackageVersion1.22.21
SHA-16B292A94EC1E8E142CC32971545968746BBF99E6
SHA-256D018B6BB0C34BCFFD3045413DDE76448D5055A47FFEC3EF9FAA8BF8502EB4D04
Key Value
MD5997E43F9C024AD9FA8064C67A53808C0
PackageArchppc
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.el4
PackageVersion1.22.21
SHA-11DE046CD1C955BC052CDF0CD90B742054D1968A2
SHA-25659C056912A0E5EF8C0F161139F4A22A6C273723019A98A90314CB3E060DE8B87
Key Value
MD51162421AEDFDCD816E1712F8DB809B4E
PackageArchx86_64
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.el4
PackageVersion1.22.21
SHA-1D69CE407CF73066762C480D42D07FC1C185C034F
SHA-25677B32592AF3E263DF5C83D92CA4E9D6F24C4D1135EFC5A1D2EB38E29243E6787