Result for 056B0FF872C7B1A798FC696E44DA071F004FF6BA

Query result

Key Value
FileName./usr/lib64/R/library/qtl/html/locateXO.html
FileSize2801
MD5CEA9C4637833E8DD546B8E74C4A8BE8D
SHA-1056B0FF872C7B1A798FC696E44DA071F004FF6BA
SHA-2562A05E2EC68F6C107F891E522EF31A10C6D40C0267F3E59280858FFB59CD09681
SSDEEP48:VpbseA97FRnyVGNHpN2u4u7kfGQMYxYUm+MxlUMZk5m8ElMdPP6YL67zxR2qCEzO:Ae2DyVGtL74DfGexYUQHUMZcE86YL672
TLSHT13A51A6AE87C0037B8852137EEE446A58EF9EC3B993E414C13C5BC1159941ABDD37A3CA
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD57E11E63E211156249326E0E8EC466F4D
PackageArchppc64
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc20
PackageVersion1.28.19
SHA-10EC3C659ABDD78EFEF862C7193B80B5D080DF978
SHA-256255BE44F551362192BE44CDB096023CF7B2098E57104F23A5660848A5F6C619A
Key Value
MD5DA51743DD1D33DAA2749F42B82EC793E
PackageArchppc
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc20
PackageVersion1.28.19
SHA-1673CDFC0660BC20C3479DE9B42A79F881FE738F3
SHA-256A1B32275539008744E7123FA7C0C3DEFE6DE86C7B47530EA872B71A6BB7BE23C
Key Value
MD5A92612FBDFEBE3E5E3F43A0F93982C2E
PackageArchs390
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc20
PackageVersion1.28.19
SHA-1F5DC36798FBF4B7BCCFF0C0A91F84D0C0918900A
SHA-256391BB0821FE5DF69679E826DF746A4D52852554B3692C229E35BC7B9FDDF66CD
Key Value
MD5695643DDC2534B9AE4C89CBFD97972A2
PackageArchs390x
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc20
PackageVersion1.28.19
SHA-12C74DCF84B133BA001F040C752C0FB327C41EEAA
SHA-256ACF372F6672E8E1B9EF6C0D2915A9197303D3C1808B0A8A935A65E248BE32C63