Key | Value |
---|---|
FileName | ./usr/lib64/R/library/sdmApp/shiny/sdmApp/www/ihsn-extra-maincolumn.css |
FileSize | 335 |
MD5 | FCF5C9D7A288FC77C33BCC68918D6415 |
SHA-1 | 04CA8F0DC5BE7F72AEAF5913FFBA087ECFE4AA9B |
SHA-256 | 8403B6C3795E195AC014AB4B0318DA7312E90314A665D927096E168D12F16993 |
SSDEEP | 3:EZTw/O62rVnTo7mDZISZJ8ZVISZfTSHjZuLSDZ1vEZ7oSZCZUwISZjL0jZQYZpXS:gw/OLFoqyUzGeHCSv8oy3Wi9w7 |
TLSH | T1A6E0EC4F1C83040E83AC74FCA8DFAA51E05FA44A284A7EF3B810E800AD001B729B244C |
hashlookup:parent-total | 8 |
hashlookup:trust | 90 |
The searched file hash is included in 8 parent files which include package known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
MD5 | E68F6582DA27EDCA1E69F530A634B380 |
PackageArch | x86_64 |
PackageDescription | A 'shiny' application that allows non-expert 'R' users to easily model species distribution. It offers a reproducible work flow for species distribution modeling into a single and user friendly environment. 'sdmApp' takes 'raster' data (in format supported by the 'raster package') and species occurrence data (several format supported) as input argument. It provides an interactive graphical user interface (GUI). |
PackageMaintainer | https://www.suse.com/ |
PackageName | R-sdmApp |
PackageRelease | lp154.4.1 |
PackageVersion | 0.0.2 |
SHA-1 | B99B5922E3BFEA92FC5A752BC08622F7B54B85CA |
SHA-256 | 283EBEDC43A1E39D2A6A6138553C5874BABB315C75F4FEF29EC15A96964BDD83 |
Key | Value |
---|---|
MD5 | 61A7E727ECD2232FD29200F6EF0BBC2E |
PackageArch | x86_64 |
PackageDescription | Data from statistical agencies and other institutions are mostly confidential. This package (see also Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v067.i04>) can be used for the generation of anonymized (micro)data, i.e. for the creation of public- and scientific-use files. The theoretical basis for the methods implemented can be found in Templ (2017) <doi:10.1007/978-3-319-50272-4>. Various risk estimation and anonymisation methods are included. Note that the package includes a graphical user interface (Meindl and Templ, 2019 <doi:10.3390/a12090191>) that allows to use various methods of this package. |
PackageName | R-sdcMicro |
PackageRelease | lp152.5.1 |
PackageVersion | 5.6.1 |
SHA-1 | 547A26A4286D512AD2BB6FF72D3F5E46BBB1C61E |
SHA-256 | B91E61B2E0CCCC87E0D6AA8D0127A0A3FB39DA47CA321558A8EC5FA608985003 |
Key | Value |
---|---|
MD5 | 18A6C825FC36E3F25885D4754DA9EC71 |
PackageArch | x86_64 |
PackageDescription | Data from statistical agencies and other institutions are mostly confidential. This package (see also Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v067.i04>) can be used for the generation of anonymized (micro)data, i.e. for the creation of public- and scientific-use files. The theoretical basis for the methods implemented can be found in Templ (2017) <doi:10.1007/978-3-319-50272-4>. Various risk estimation and anonymisation methods are included. Note that the package includes a graphical user interface (Meindl and Templ, 2019 <doi:10.3390/a12090191>) that allows to use various methods of this package. |
PackageName | R-sdcMicro |
PackageRelease | lp153.5.1 |
PackageVersion | 5.6.1 |
SHA-1 | CC06C36ED1144746D290B8A01CBB31502F3F8B8F |
SHA-256 | 537F07D39F32D36117FE0BB29839B872000F62493EDEAEFD52E4F55A5236B2D7 |
Key | Value |
---|---|
MD5 | BB4A342C9995BB9B7DE7C13E4EEE0570 |
PackageArch | x86_64 |
PackageDescription | Data from statistical agencies and other institutions are mostly confidential. This package (see also Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v067.i04>) can be used for the generation of anonymized (micro)data, i.e. for the creation of public- and scientific-use files. The theoretical basis for the methods implemented can be found in Templ (2017) <doi:10.1007/978-3-319-50272-4>. Various risk estimation and anonymisation methods are included. Note that the package includes a graphical user interface (Meindl and Templ, 2019 <doi:10.3390/a12090191>) that allows to use various methods of this package. |
PackageName | R-sdcMicro |
PackageRelease | lp154.5.1 |
PackageVersion | 5.6.1 |
SHA-1 | 16BA466E3F88C4ECD0C365263B6330CE61DAA916 |
SHA-256 | B419D73105077B9A02D94FC10479C3E13151EAE5D5E641FA5DAA5064D0F090C3 |
Key | Value |
---|---|
MD5 | 9BF6F547F2976F5E57B0E3B46356E13D |
PackageArch | x86_64 |
PackageDescription | A 'shiny' application that allows non-expert 'R' users to easily model species distribution. It offers a reproducible work flow for species distribution modeling into a single and user friendly environment. 'sdmApp' takes 'raster' data (in format supported by the 'raster package') and species occurrence data (several format supported) as input argument. It provides an interactive graphical user interface (GUI). |
PackageName | R-sdmApp |
PackageRelease | 4.6 |
PackageVersion | 0.0.2 |
SHA-1 | 00D05FAF4FFEBE790906D1A59DCCD00552B32CFA |
SHA-256 | FADDB1D2D51D77B6944EBB478089821BCD38D23075934D3747E9EB36E2D4FAEE |
Key | Value |
---|---|
MD5 | F20F1B2052BB6A08B112DAB4D7E83E0C |
PackageArch | x86_64 |
PackageDescription | A 'shiny' application that allows non-expert 'R' users to easily model species distribution. It offers a reproducible work flow for species distribution modeling into a single and user friendly environment. 'sdmApp' takes 'raster' data (in format supported by the 'raster package') and species occurrence data (several format supported) as input argument. It provides an interactive graphical user interface (GUI). |
PackageName | R-sdmApp |
PackageRelease | lp152.4.2 |
PackageVersion | 0.0.2 |
SHA-1 | 392FE5E277E864D78673AA94B275A11C4254B17F |
SHA-256 | 5664077975BCCB1FE3D3FF55CA8D5D9FB896F05555D3502B479174F969021521 |
Key | Value |
---|---|
MD5 | 417DEFF20750DEE1826D2D233BD97383 |
PackageArch | x86_64 |
PackageDescription | A 'shiny' application that allows non-expert 'R' users to easily model species distribution. It offers a reproducible work flow for species distribution modeling into a single and user friendly environment. 'sdmApp' takes 'raster' data (in format supported by the 'raster package') and species occurrence data (several format supported) as input argument. It provides an interactive graphical user interface (GUI). |
PackageName | R-sdmApp |
PackageRelease | lp153.4.2 |
PackageVersion | 0.0.2 |
SHA-1 | DF5C0390A35EBF549022DA67B78F3C06983BB508 |
SHA-256 | C7ED0F3BFF3BF12D7648F37C83EBB9215158E8C5CA1E3555FE3963599D128019 |
Key | Value |
---|---|
MD5 | 097D91A0F63F819C1901EF3338499169 |
PackageArch | x86_64 |
PackageDescription | Data from statistical agencies and other institutions are mostly confidential. This package (see also Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v067.i04>) can be used for the generation of anonymized (micro)data, i.e. for the creation of public- and scientific-use files. The theoretical basis for the methods implemented can be found in Templ (2017) <doi:10.1007/978-3-319-50272-4>. Various risk estimation and anonymisation methods are included. Note that the package includes a graphical user interface (Meindl and Templ, 2019 <doi:10.3390/a12090191>) that allows to use various methods of this package. |
PackageName | R-sdcMicro |
PackageRelease | 5.3 |
PackageVersion | 5.6.1 |
SHA-1 | A080EA19355BFC81C3EA9B6EA4A8DD06DCD5610D |
SHA-256 | 94894E276C2EA091E78046934910048E929EF077A13AA47D2803188799239CB3 |