Result for 04CA8F0DC5BE7F72AEAF5913FFBA087ECFE4AA9B

Query result

Key Value
FileName./usr/lib64/R/library/sdmApp/shiny/sdmApp/www/ihsn-extra-maincolumn.css
FileSize335
MD5FCF5C9D7A288FC77C33BCC68918D6415
SHA-104CA8F0DC5BE7F72AEAF5913FFBA087ECFE4AA9B
SHA-2568403B6C3795E195AC014AB4B0318DA7312E90314A665D927096E168D12F16993
SSDEEP3:EZTw/O62rVnTo7mDZISZJ8ZVISZfTSHjZuLSDZ1vEZ7oSZCZUwISZjL0jZQYZpXS:gw/OLFoqyUzGeHCSv8oy3Wi9w7
TLSHT1A6E0EC4F1C83040E83AC74FCA8DFAA51E05FA44A284A7EF3B810E800AD001B729B244C
hashlookup:parent-total8
hashlookup:trust90

Network graph view

Parents (Total: 8)

The searched file hash is included in 8 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5E68F6582DA27EDCA1E69F530A634B380
PackageArchx86_64
PackageDescriptionA 'shiny' application that allows non-expert 'R' users to easily model species distribution. It offers a reproducible work flow for species distribution modeling into a single and user friendly environment. 'sdmApp' takes 'raster' data (in format supported by the 'raster package') and species occurrence data (several format supported) as input argument. It provides an interactive graphical user interface (GUI).
PackageMaintainerhttps://www.suse.com/
PackageNameR-sdmApp
PackageReleaselp154.4.1
PackageVersion0.0.2
SHA-1B99B5922E3BFEA92FC5A752BC08622F7B54B85CA
SHA-256283EBEDC43A1E39D2A6A6138553C5874BABB315C75F4FEF29EC15A96964BDD83
Key Value
MD561A7E727ECD2232FD29200F6EF0BBC2E
PackageArchx86_64
PackageDescriptionData from statistical agencies and other institutions are mostly confidential. This package (see also Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v067.i04>) can be used for the generation of anonymized (micro)data, i.e. for the creation of public- and scientific-use files. The theoretical basis for the methods implemented can be found in Templ (2017) <doi:10.1007/978-3-319-50272-4>. Various risk estimation and anonymisation methods are included. Note that the package includes a graphical user interface (Meindl and Templ, 2019 <doi:10.3390/a12090191>) that allows to use various methods of this package.
PackageNameR-sdcMicro
PackageReleaselp152.5.1
PackageVersion5.6.1
SHA-1547A26A4286D512AD2BB6FF72D3F5E46BBB1C61E
SHA-256B91E61B2E0CCCC87E0D6AA8D0127A0A3FB39DA47CA321558A8EC5FA608985003
Key Value
MD518A6C825FC36E3F25885D4754DA9EC71
PackageArchx86_64
PackageDescriptionData from statistical agencies and other institutions are mostly confidential. This package (see also Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v067.i04>) can be used for the generation of anonymized (micro)data, i.e. for the creation of public- and scientific-use files. The theoretical basis for the methods implemented can be found in Templ (2017) <doi:10.1007/978-3-319-50272-4>. Various risk estimation and anonymisation methods are included. Note that the package includes a graphical user interface (Meindl and Templ, 2019 <doi:10.3390/a12090191>) that allows to use various methods of this package.
PackageNameR-sdcMicro
PackageReleaselp153.5.1
PackageVersion5.6.1
SHA-1CC06C36ED1144746D290B8A01CBB31502F3F8B8F
SHA-256537F07D39F32D36117FE0BB29839B872000F62493EDEAEFD52E4F55A5236B2D7
Key Value
MD5BB4A342C9995BB9B7DE7C13E4EEE0570
PackageArchx86_64
PackageDescriptionData from statistical agencies and other institutions are mostly confidential. This package (see also Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v067.i04>) can be used for the generation of anonymized (micro)data, i.e. for the creation of public- and scientific-use files. The theoretical basis for the methods implemented can be found in Templ (2017) <doi:10.1007/978-3-319-50272-4>. Various risk estimation and anonymisation methods are included. Note that the package includes a graphical user interface (Meindl and Templ, 2019 <doi:10.3390/a12090191>) that allows to use various methods of this package.
PackageNameR-sdcMicro
PackageReleaselp154.5.1
PackageVersion5.6.1
SHA-116BA466E3F88C4ECD0C365263B6330CE61DAA916
SHA-256B419D73105077B9A02D94FC10479C3E13151EAE5D5E641FA5DAA5064D0F090C3
Key Value
MD59BF6F547F2976F5E57B0E3B46356E13D
PackageArchx86_64
PackageDescriptionA 'shiny' application that allows non-expert 'R' users to easily model species distribution. It offers a reproducible work flow for species distribution modeling into a single and user friendly environment. 'sdmApp' takes 'raster' data (in format supported by the 'raster package') and species occurrence data (several format supported) as input argument. It provides an interactive graphical user interface (GUI).
PackageNameR-sdmApp
PackageRelease4.6
PackageVersion0.0.2
SHA-100D05FAF4FFEBE790906D1A59DCCD00552B32CFA
SHA-256FADDB1D2D51D77B6944EBB478089821BCD38D23075934D3747E9EB36E2D4FAEE
Key Value
MD5F20F1B2052BB6A08B112DAB4D7E83E0C
PackageArchx86_64
PackageDescriptionA 'shiny' application that allows non-expert 'R' users to easily model species distribution. It offers a reproducible work flow for species distribution modeling into a single and user friendly environment. 'sdmApp' takes 'raster' data (in format supported by the 'raster package') and species occurrence data (several format supported) as input argument. It provides an interactive graphical user interface (GUI).
PackageNameR-sdmApp
PackageReleaselp152.4.2
PackageVersion0.0.2
SHA-1392FE5E277E864D78673AA94B275A11C4254B17F
SHA-2565664077975BCCB1FE3D3FF55CA8D5D9FB896F05555D3502B479174F969021521
Key Value
MD5417DEFF20750DEE1826D2D233BD97383
PackageArchx86_64
PackageDescriptionA 'shiny' application that allows non-expert 'R' users to easily model species distribution. It offers a reproducible work flow for species distribution modeling into a single and user friendly environment. 'sdmApp' takes 'raster' data (in format supported by the 'raster package') and species occurrence data (several format supported) as input argument. It provides an interactive graphical user interface (GUI).
PackageNameR-sdmApp
PackageReleaselp153.4.2
PackageVersion0.0.2
SHA-1DF5C0390A35EBF549022DA67B78F3C06983BB508
SHA-256C7ED0F3BFF3BF12D7648F37C83EBB9215158E8C5CA1E3555FE3963599D128019
Key Value
MD5097D91A0F63F819C1901EF3338499169
PackageArchx86_64
PackageDescriptionData from statistical agencies and other institutions are mostly confidential. This package (see also Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v067.i04>) can be used for the generation of anonymized (micro)data, i.e. for the creation of public- and scientific-use files. The theoretical basis for the methods implemented can be found in Templ (2017) <doi:10.1007/978-3-319-50272-4>. Various risk estimation and anonymisation methods are included. Note that the package includes a graphical user interface (Meindl and Templ, 2019 <doi:10.3390/a12090191>) that allows to use various methods of this package.
PackageNameR-sdcMicro
PackageRelease5.3
PackageVersion5.6.1
SHA-1A080EA19355BFC81C3EA9B6EA4A8DD06DCD5610D
SHA-25694894E276C2EA091E78046934910048E929EF077A13AA47D2803188799239CB3