Result for 02CCAF1E146DD700947537B865F800DC70E25D0D

Query result

Key Value
FileName./usr/lib/R/site-library/Design/html/survplot.html
FileSize17454
MD520574AF9E40F6C7C391AB6284C1D732B
SHA-102CCAF1E146DD700947537B865F800DC70E25D0D
SHA-256DC08575FB7833BE3439BAF19CE02C771B9A5FC1F5328D2606E58A100FDB84458
SSDEEP384:fXm1PFFiWyxm3migPGgsLUKxx6q0UBTFgSg17GM:vwrYMgPGFnr0MgSgt3
TLSHT1B072B802A2C813765A11C0EED71968EC77EF52AC63A031C0BE5F9F6E974D998027778D
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize834506
MD533811BECABFD2D741E9B6EF65E592362
PackageDescriptionGNU R regression modeling strategies tools by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. Design is a collection of about 180 functions that assist and streamline modeling, especially for biostatistical and epidemiologic applications. It also contains new functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. Design works with almost any regression model, but it was especially written to work with logistic regression, Cox regression, accelerated failure time models, ordinary linear models, and the Buckley-James model. . See Frank Harrell (2002), Regression Modeling Strategies, Springer Series in Statistics, as well as http://hesweb1.med.virginia.edu/biostat/s/Design.html
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-design
PackageSectionmath
PackageVersion2.0.8-1
SHA-110668AA0B27555C5A0CF5D044FAB123406BE34E2
SHA-256B7A59C282FACEE52D6BD74B322A90E1D6F3E43C7C19484175E93E43874095FB4
Key Value
FileSize836968
MD5024242A947C03132AFBD892899DBAE6F
PackageDescriptionGNU R regression modeling strategies tools by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. Design is a collection of about 180 functions that assist and streamline modeling, especially for biostatistical and epidemiologic applications. It also contains new functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. Design works with almost any regression model, but it was especially written to work with logistic regression, Cox regression, accelerated failure time models, ordinary linear models, and the Buckley-James model. . See Frank Harrell (2002), Regression Modeling Strategies, Springer Series in Statistics, as well as http://hesweb1.med.virginia.edu/biostat/s/Design.html
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-design
PackageSectionmath
PackageVersion2.0.8-1
SHA-1299F0590769B9D676C14859206AD099328710F13
SHA-25602AF6E1B8D73D5272E2A1915ED502590ED22C16DC9B9915B65ABF6EE9C420903
Key Value
FileSize834628
MD5A99775E199297496250118C40AA66961
PackageDescriptionGNU R regression modeling strategies tools by Frank Harrell Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. Design is a collection of about 180 functions that assist and streamline modeling, especially for biostatistical and epidemiologic applications. It also contains new functions for binary and ordinal logistic regression models and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. Design works with almost any regression model, but it was especially written to work with logistic regression, Cox regression, accelerated failure time models, ordinary linear models, and the Buckley-James model. . See Frank Harrell (2002), Regression Modeling Strategies, Springer Series in Statistics, as well as http://hesweb1.med.virginia.edu/biostat/s/Design.html
PackageMaintainerDirk Eddelbuettel <edd@debian.org>
PackageNamer-cran-design
PackageSectionmath
PackageVersion2.0.8-1
SHA-1007828E2FD536FF059CB8C40CC2EC4EF1E847A3D
SHA-25688B5B37861770BA6CEBBA7E53DC9884EDCF56546B57F92682733007351CC6C4C