Result for 029E2D6D842ACC8F5BF9A50BBFA6EE847902189C

Query result

Key Value
MD59397956255C7AF2946DEB3BCD69CA260
PackageArchppc64
PackageDescription Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts.
PackageMaintainerFedora Project
PackageNamepython2-scikit-learn
PackageRelease4.fc24
PackageVersion0.17.1
SHA-1029E2D6D842ACC8F5BF9A50BBFA6EE847902189C
SHA-256880E8AC446B5B246648AAFAC6AFC602AEE63F7C6377B9A8C7C7F61849C008326
hashlookup:children-total990
hashlookup:trust50

Network graph view

Children (Total: 990)

The searched file hash includes 990 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/gaussian_process/regression_models.pyo
FileSize2782
MD5FCEE553B4A30AAA70EDE5DD624C1CC56
SHA-1001C2DD7CD99576D8C94AE1612D430D0F026A6B8
SHA-2569CC0879DF2D96A073CD312F99FAAAE053B9FA0F174E0A5589D39F5E80ABDC649
SSDEEP48:zl0fFKSRVwbaVXk2Yxc50URwbaVspO2Ye8Vfy3uGwbaVS2YC2Y6:zKKSRVnVVYqeURnVstYe8VfunVrYbY6
TLSHT19E51CC486DE91E3AC2A6C970B9E16003CFA5D4B737869B0133DD743C3F95B79492E289
Key Value
FileName./usr/lib/python3/dist-packages/sklearn/kernel_approximation.py
FileSize17973
MD52B4730A91CB8ED5575D1EF4A7BE5B252
SHA-10028A347DC05248423B93A39EEF5E0178F8BBCFD
SHA-256F37397D32AA3E5C3C1694E45926566E58A79C9AEE42422CA093480A57798FDDD
SSDEEP384:5Em1dK784+WzgQ4rUtOlgPYY77u7q7EvRdYJ5aKcMatdI0uow3u:5z1dKYhWzLoUtdv40EZdrMatdI0uoku
TLSHT1DC829415BD410A2D23C7C47221FE9643EE691463519610377EAD83982FA3C74F2AEFC5
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/utils/setup.pyo
FileSize2214
MD5B3150BACB96A63E3737626CAFC56CF8B
SHA-1007658CE7850965816C770DC10E531E20E9D4E01
SHA-2567BB5CEB1778582F2DB5F764BE095872C8A5956AB6D42FDE508D2C6E6DD79888A
SSDEEP48:wja/0WlASLmpx9LKw2ie1ZDTkhr3B4p+7ryQ2etn1ONyBu2U7:wGMWlASLIlrpe1ZUhCm2Betn1OC8
TLSHT18C41FEE2A3A84F6B94750374F0F453030EB4F9FA6D8157900AA4E56D78C87F6C31B299
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/tests/test_learning_curve.pyc
FileSize12279
MD57B2E0F92112AD5D23B4137D1B3662296
SHA-100A3BAE257AFFC736763854D6A5DA1BA1C2EE27E
SHA-256397EF15640ED2079AFB9276882C183058497F91B511B0D9844B50158D0784D70
SSDEEP192:ZSyChi4QHP93mg2dSOeLgdWj5d36zh3xc3ZW96fzkKRkP05Dtc64c4k2CvxymkLS:bHvsWYj96fwKmyxH4kL4Lj8888u
TLSHT1BC42CBC4A3E75F5BD57028B8A1E0021FBF75F4A3AD006791196CD83B35C87A8D63A395
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/tests/test_grid_search.pyc
FileSize30711
MD577DA75AE4DB1FBD13B85B4D47649B2D1
SHA-100F97EA0DBC22580778669C5C68B147197A1454D
SHA-256A1E1D145CE2312DADED7B017DAB267FC8FB6D5E4A6C0A04918C86FDA75845A1A
SSDEEP768:iaviZntmclUdXlCMsvr/afnOFcE99sVaPA:m+clOXlCMsvr/afnOFcE9WVaY
TLSHT18BD21F80B3D25B5BC4744538B5F0432BAEA5F4B7BA02778016BCE83E39D8779C52A785
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/linear_model/tests/test_passive_aggressive.pyo
FileSize10481
MD5CBF28BB7A9F8BCCB235ADC6BD236D7D8
SHA-100FA32C16273E5AA558ED1C2C8C726B027CA6742
SHA-2569547D79C745B22F722F22660BEC223D34909755B38B279267A0978FEB566ADA0
SSDEEP192:WOWgvE2IfTXfemcb0zQUEDx3PKaK38KggCnw4eEKjcGrUICmSyW6t7mZ8v:WIv7f1uQCTggCw3tjdrWqa8v
TLSHT16222EC40E3E28E5BD0751538A1F00217AE95F5BBAE02BB4096BCE03F3AD8365D95F745
Key Value
FileName./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py
FileSize2407
MD56CCA3A2DFA57FF6AF3CF3A27AE22F209
SHA-101070C25205C477A297A7CCE48DA78871F64DD2C
SHA-256298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8
SSDEEP48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq
TLSHT1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/feature_selection/tests/test_rfe.pyo
FileSize11870
MD5CFA553384D11987A1E34923E22F22468
SHA-101133FE0A877394BD2D4FAE7DFDEF4CB5181E9C0
SHA-25656E6D62D9CC49952A288F58145BC5231707A3133619A451155FDBF67ADBA3BE2
SSDEEP192:QnHUjkv7zfTfAgwbekKo7o2IP4X2xpGfg/1Q5JF4Jp81BOXySms:QnHAM3fefG8OGs
TLSHT150320080B3E1C75BD8B1157254F04317AEA0F5BBBA016B8166FCE47E39D83A5C61E389
Key Value
FileName./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py
FileSize1895
MD5A4CC2943F64D2730EF80B9504C583D19
SHA-1011BDEF5443BE65B5EC29C9D37FCEEC7206429FA
SHA-2562B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC
SSDEEP48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr
TLSHT15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/decomposition/tests/test_truncated_svd.pyo
FileSize5564
MD5A150F50C694B3CCEBB416B7ABB814E12
SHA-1016EADA07860BE7CF225F03F69F4E08C62BC0436
SHA-256A643684209686FA3F576C513E555D7B18843C10F46D589D28A4B6A49FC59C807
SSDEEP96:diG+qJhpgWwdsMsxYH36C9oxqPfKHqG4oVlRgSufzVf8aCW:E0h6ds3GL9okPfKuoVlRgSufztCW
TLSHT161B15441F7EA864BD8751274A4F18103ADA9F2F36E01275523AED43B36C9729D06F3C6