Key | Value |
---|---|
MD5 | 9397956255C7AF2946DEB3BCD69CA260 |
PackageArch | ppc64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python2-scikit-learn |
PackageRelease | 4.fc24 |
PackageVersion | 0.17.1 |
SHA-1 | 029E2D6D842ACC8F5BF9A50BBFA6EE847902189C |
SHA-256 | 880E8AC446B5B246648AAFAC6AFC602AEE63F7C6377B9A8C7C7F61849C008326 |
hashlookup:children-total | 990 |
hashlookup:trust | 50 |
The searched file hash includes 990 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/gaussian_process/regression_models.pyo |
FileSize | 2782 |
MD5 | FCEE553B4A30AAA70EDE5DD624C1CC56 |
SHA-1 | 001C2DD7CD99576D8C94AE1612D430D0F026A6B8 |
SHA-256 | 9CC0879DF2D96A073CD312F99FAAAE053B9FA0F174E0A5589D39F5E80ABDC649 |
SSDEEP | 48:zl0fFKSRVwbaVXk2Yxc50URwbaVspO2Ye8Vfy3uGwbaVS2YC2Y6:zKKSRVnVVYqeURnVstYe8VfunVrYbY6 |
TLSH | T19E51CC486DE91E3AC2A6C970B9E16003CFA5D4B737869B0133DD743C3F95B79492E289 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/kernel_approximation.py |
FileSize | 17973 |
MD5 | 2B4730A91CB8ED5575D1EF4A7BE5B252 |
SHA-1 | 0028A347DC05248423B93A39EEF5E0178F8BBCFD |
SHA-256 | F37397D32AA3E5C3C1694E45926566E58A79C9AEE42422CA093480A57798FDDD |
SSDEEP | 384:5Em1dK784+WzgQ4rUtOlgPYY77u7q7EvRdYJ5aKcMatdI0uow3u:5z1dKYhWzLoUtdv40EZdrMatdI0uoku |
TLSH | T1DC829415BD410A2D23C7C47221FE9643EE691463519610377EAD83982FA3C74F2AEFC5 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/utils/setup.pyo |
FileSize | 2214 |
MD5 | B3150BACB96A63E3737626CAFC56CF8B |
SHA-1 | 007658CE7850965816C770DC10E531E20E9D4E01 |
SHA-256 | 7BB5CEB1778582F2DB5F764BE095872C8A5956AB6D42FDE508D2C6E6DD79888A |
SSDEEP | 48:wja/0WlASLmpx9LKw2ie1ZDTkhr3B4p+7ryQ2etn1ONyBu2U7:wGMWlASLIlrpe1ZUhCm2Betn1OC8 |
TLSH | T18C41FEE2A3A84F6B94750374F0F453030EB4F9FA6D8157900AA4E56D78C87F6C31B299 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/tests/test_learning_curve.pyc |
FileSize | 12279 |
MD5 | 7B2E0F92112AD5D23B4137D1B3662296 |
SHA-1 | 00A3BAE257AFFC736763854D6A5DA1BA1C2EE27E |
SHA-256 | 397EF15640ED2079AFB9276882C183058497F91B511B0D9844B50158D0784D70 |
SSDEEP | 192:ZSyChi4QHP93mg2dSOeLgdWj5d36zh3xc3ZW96fzkKRkP05Dtc64c4k2CvxymkLS:bHvsWYj96fwKmyxH4kL4Lj8888u |
TLSH | T1BC42CBC4A3E75F5BD57028B8A1E0021FBF75F4A3AD006791196CD83B35C87A8D63A395 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/tests/test_grid_search.pyc |
FileSize | 30711 |
MD5 | 77DA75AE4DB1FBD13B85B4D47649B2D1 |
SHA-1 | 00F97EA0DBC22580778669C5C68B147197A1454D |
SHA-256 | A1E1D145CE2312DADED7B017DAB267FC8FB6D5E4A6C0A04918C86FDA75845A1A |
SSDEEP | 768:iaviZntmclUdXlCMsvr/afnOFcE99sVaPA:m+clOXlCMsvr/afnOFcE9WVaY |
TLSH | T18BD21F80B3D25B5BC4744538B5F0432BAEA5F4B7BA02778016BCE83E39D8779C52A785 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/linear_model/tests/test_passive_aggressive.pyo |
FileSize | 10481 |
MD5 | CBF28BB7A9F8BCCB235ADC6BD236D7D8 |
SHA-1 | 00FA32C16273E5AA558ED1C2C8C726B027CA6742 |
SHA-256 | 9547D79C745B22F722F22660BEC223D34909755B38B279267A0978FEB566ADA0 |
SSDEEP | 192:WOWgvE2IfTXfemcb0zQUEDx3PKaK38KggCnw4eEKjcGrUICmSyW6t7mZ8v:WIv7f1uQCTggCw3tjdrWqa8v |
TLSH | T16222EC40E3E28E5BD0751538A1F00217AE95F5BBAE02BB4096BCE03F3AD8365D95F745 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/feature_selection/tests/test_rfe.pyo |
FileSize | 11870 |
MD5 | CFA553384D11987A1E34923E22F22468 |
SHA-1 | 01133FE0A877394BD2D4FAE7DFDEF4CB5181E9C0 |
SHA-256 | 56E6D62D9CC49952A288F58145BC5231707A3133619A451155FDBF67ADBA3BE2 |
SSDEEP | 192:QnHUjkv7zfTfAgwbekKo7o2IP4X2xpGfg/1Q5JF4Jp81BOXySms:QnHAM3fefG8OGs |
TLSH | T150320080B3E1C75BD8B1157254F04317AEA0F5BBBA016B8166FCE47E39D83A5C61E389 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/decomposition/tests/test_truncated_svd.pyo |
FileSize | 5564 |
MD5 | A150F50C694B3CCEBB416B7ABB814E12 |
SHA-1 | 016EADA07860BE7CF225F03F69F4E08C62BC0436 |
SHA-256 | A643684209686FA3F576C513E555D7B18843C10F46D589D28A4B6A49FC59C807 |
SSDEEP | 96:diG+qJhpgWwdsMsxYH36C9oxqPfKHqG4oVlRgSufzVf8aCW:E0h6ds3GL9okPfKuoVlRgSufztCW |
TLSH | T161B15441F7EA864BD8751274A4F18103ADA9F2F36E01275523AED43B36C9729D06F3C6 |