Result for 01A0C6F3010867D9F9B3BA29E635F2F4CD7D0BEA

Query result

Key Value
FileName./usr/lib/python3.8/site-packages/seaborn/tests/__pycache__/test_core.cpython-38.opt-1.pyc
FileSize29336
MD5C55DB229189CAD8AB2C17B97970A5633
SHA-101A0C6F3010867D9F9B3BA29E635F2F4CD7D0BEA
SHA-256561D213A0D094DE4C948A3256342DA512D623A4800A8485266E8D6707C3EBC97
SSDEEP768:eUYGZWBFFzR5suNaJp6FKMg95PACeEEK7HUDUdQHeum:eUY267zR+uNaJp6HihALrK7HUDUdDum
TLSHT1B0D2FAFCF85B6993FC19F6BE801E4B04AAE8E2DB53496D129445C1DA0E3718A1C971CF
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5CD8574FF26C641B63B736B6A5417C3BD
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.13
PackageVersion0.11.1
SHA-1BBB01FED02FB48C0221A33F404AEA342B099B79A
SHA-25630AA757CD7A14E5EE502B1FBE8D5EC4F945F443CE4964C4924B7A8FD98273EAE
Key Value
MD504C6ECE00B60038E0397C1F11455D8E6
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease2.1
PackageVersion0.11.1
SHA-15532D2D71D2F3B58D63AE14EB963B453D9E52E16
SHA-256354084ED4309FF74DABDA5C5F2A43365DFBCC366D9C0E6C4A408A6CDE91429C9
Key Value
MD514F363F5AE740C7730F62085329EA233
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython38-seaborn
PackageRelease2.6
PackageVersion0.11.1
SHA-1AC7C738409FBBB7A600F94F03F165DFC9F40133C
SHA-256D5F543CAAF236C34383D5223796CAC22453339C1159D1834CAB5C2C6AC42617B
Key Value
MD58D7D0069B446A5556E87764BC9304C7B
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.27
PackageVersion0.11.1
SHA-1B7DE7A02FE65B9B85CC03286F5F10F3F30FE8E56
SHA-2565C3AE53C87B1F421A444E0CB389DE66548E7DCDD0CBCC9126F661D04FC43F277