Key | Value |
---|---|
FileName | ./usr/lib64/python3.6/site-packages/Crypto/SelfTest/Cipher/__pycache__/test_CBC.cpython-36.pyc |
FileSize | 16624 |
MD5 | BDAE6F416C54F6FBCAA4D0031F6264E6 |
SHA-1 | 016F6413050E33DD2304A59D4EB111779E94F8C5 |
SHA-256 | 01D6AC51099555E85A775E5A9483DDAD953A32327DB83C5DF82287C67B4138C0 |
SSDEEP | 384:W+CHIr9asoIlmOp6FxODHML+lExs5DQvNi+6:WvIr9aHxODHML+lEYQvk+6 |
TLSH | T1BE72A39895136F56FE21F3FC9E1B17D12E21A632BF4587A1012180CD7F8E0B69CB1D8A |
hashlookup:parent-total | 14 |
hashlookup:trust | 100 |
The searched file hash is included in 14 parent files which include package known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
MD5 | B84EB90D29AD688AEC3D1EF192E374B3 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageMaintainer | https://www.suse.com/ |
PackageName | python3-pycryptodome |
PackageRelease | lp154.45.1 |
PackageVersion | 3.12.0 |
SHA-1 | F460C5FE9FAE19A41F6BE20E61635D169FCB6D2E |
SHA-256 | 2655F575FEDE9F8A2CC5682907299E5C893B5E99714E5A99C1C91AB23BAEC8A7 |
Key | Value |
---|---|
MD5 | 0F5E88508AB04922E169B8EF16C16002 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp153.2.1 |
PackageVersion | 3.12.0 |
SHA-1 | E57C4E86983573B0ADC06EC4A5E102ED512D62F3 |
SHA-256 | 4D68B0EE3D516F38BEE0547DED22BFF103E30DDFE61787E18C33BE583DA41BC1 |
Key | Value |
---|---|
MD5 | 879EF7729091A3ED2190296AB5B0FA5A |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp153.45.3 |
PackageVersion | 3.12.0 |
SHA-1 | 33A4E9B5FCC8F085A50EE66B6E36814580AB8A2D |
SHA-256 | E293116396EA19ED6C1C1C398870DA8E641D6A1AAF2E323C14A4303B9FC48220 |
Key | Value |
---|---|
MD5 | DBC0738D97027717CA06AA5C6EB15B99 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 06FB0960DA6A35AC877BDF1E4ED7F04E7EDB94C0 |
SHA-256 | D9CF1993B9FA0CB51BEB213D79421982D5372E30FA630D58052296A6613EA294 |
Key | Value |
---|---|
MD5 | B882FBCDB8B3C60769751FFAD019DF54 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 0D5F22ACD2ECAE641EED52CE86A775EE51DD25C9 |
SHA-256 | 70A0DF30BA35B4D5AE4AE5C81516BD5F8EB5859C61708C9ABBEB4C00361298DC |
Key | Value |
---|---|
MD5 | F34CE8F0630583D59C64D04F99207036 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp152.2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 16E9C665EE7FFCA697825C52C80D2E1A838A9D8A |
SHA-256 | D89759AEBEB80CC772C62B8176E1FE13BD4161B880393220BCBD92F2E8EB43CC |
Key | Value |
---|---|
MD5 | 2FE7342865E8DC75238A2BC3CADBEBFE |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp154.2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 08AEE3F160035584664CD313855DA518003429B9 |
SHA-256 | AD2071332C555CFE422896761417ACCCD747FD8BBA95CC6C46D21F8B44CA9A84 |
Key | Value |
---|---|
MD5 | 73596C2D06FECD511D5686B216A30D22 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp153.2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 73263228D93D474E98B8F955E641B0E075E333BD |
SHA-256 | 5EE827199D5E9B2A7C16CC2CC421F4EB20067C7E9B55D8D47F357AB8A59DE7C2 |
Key | Value |
---|---|
MD5 | 765BA01589550127B43E69C6A7B0D5FD |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 45.2 |
PackageVersion | 3.12.0 |
SHA-1 | 5E9655B5C0EE8672186ECFA3FCAED264C1778DC5 |
SHA-256 | A40E5EB3E7119476078718027BBB24C68FED0EB7C2054F36B8765F7BF2850785 |
Key | Value |
---|---|
MD5 | 236119843F94E291DEC272A0F64C5F57 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 2.1 |
PackageVersion | 3.12.0 |
SHA-1 | B513B5CD0DC245F54E968CF5C157DB68BFB9E195 |
SHA-256 | 06AE499658BC33B714D87DF4B33BA112E2636F075B5983B73BAC80BE9282237E |
Key | Value |
---|---|
MD5 | 1E3F7DD7AA3ACB0BCA2EB56DA0E3AA7B |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp152.2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 45BA7EA61A3E8E87E927C7DD7DC05EAD1BF42846 |
SHA-256 | 7497C69C2E6E08B437A908AD466CEB8A6083F768BD7D083BEB331E216E442B79 |
Key | Value |
---|---|
MD5 | 6D27B668C69CB08623B3DE459E0F5CBE |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 591A3F5A82DA3D976D1B8A2478FEFDCE1B1897CE |
SHA-256 | C165532EC9A12BBD06E102FC7FB1265AB0A1376535685F4813425CD3C1D129F6 |
Key | Value |
---|---|
MD5 | 4F81B046EAB4F87FA9A1F8CC3DEF564D |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 84400316211B646E785B3B9C91E17ED99BCA50FC |
SHA-256 | 5379C536E551394B09CB934A76404ABF843741C926F6B9AEEFAAEFDFA0C02652 |
Key | Value |
---|---|
MD5 | 9B90F949DA79B27A1FAC367158EE3A67 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 2.1 |
PackageVersion | 3.12.0 |
SHA-1 | 8973A88C9FF68EB0E93170C5161DB57690A7676E |
SHA-256 | 235ECEF376A6CE70FAA384C681986BE1F4527DA85F5F096DD25E7538CD1BDAFD |