Key | Value |
---|---|
FileName | ./usr/lib64/python3.6/site-packages/Crypto/SelfTest/Hash/__pycache__/__init__.cpython-36.pyc |
FileSize | 1844 |
MD5 | 8AB2300FB7B0F2C69EB017734F041C07 |
SHA-1 | 00F53BDAAF3A8120688189B14B2344B175012B84 |
SHA-256 | 871B09F48F7C9863A27CE4A20F213B0F18F0E90EEF1AEC0A801AAE28C1928D48 |
SSDEEP | 48:j28CnX9XClLjccHrHIHcHwtnjQu9s/9j/bWr19:j89NcHrHIHcHwFv9s/9Xc |
TLSH | T130317B56BC072B3BF685F6FC9CA529350944E5B5D5C839055A3CD4F7369206E88C2CCC |
hashlookup:parent-total | 5 |
hashlookup:trust | 75 |
The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
MD5 | 5F545C7906D87052E8A3745FAF0DDE52 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 2.4 |
PackageVersion | 3.9.9 |
SHA-1 | 5F743817A176356D83D0C7106355523B00B69BB0 |
SHA-256 | 29AAD45ABB182640B1620D765E655DCF8016BAC379A00987F893E2751C873024 |
Key | Value |
---|---|
MD5 | CC0C16E55CC4C81FC62B57624CD588D6 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp152.2.2 |
PackageVersion | 3.9.9 |
SHA-1 | E9B56B88A245EC3281BF0D813B1E5DB4DAEC3087 |
SHA-256 | 147CAFE381200420E5D8D104A983CD40D114D9CE22A2FE5EFB395168687066F7 |
Key | Value |
---|---|
MD5 | CAA770826B49BB2BAA0B3837AAEEB1C1 |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | 41.4 |
PackageVersion | 3.9.9 |
SHA-1 | BDD9D71DFE1C84F7EE49508A7C65959A62A81386 |
SHA-256 | 020A12816F2FF629AEDF161A8F58CD8CF35494C9A5AC1EE4FA7D2113CAD6FF1C |
Key | Value |
---|---|
MD5 | CCD0A28F7E6FF064C805CA3EC8F286EA |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp151.41.2 |
PackageVersion | 3.9.9 |
SHA-1 | 0335FD767E8E439AB28AB17D22BD00C290644EF0 |
SHA-256 | 8AF687ACF8D8FE395DF38E9CA1939FAAE406A5C5CFBF7DF29D2394E5515BFC81 |
Key | Value |
---|---|
MD5 | E5FA50F36FF25DA36B8020BFF1CA366E |
PackageArch | x86_64 |
PackageDescription | PyCryptodome is a self-contained Python package of low-level cryptographic primitives. PyCryptodome is a fork of PyCrypto, residing in the `Crypto` namespace for better drop-in compatibility, while it brings several enhancements with respect to the last official version of PyCrypto (2.6.1), for instance: * Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB) * Accelerated AES on Intel platforms via AES-NI * First class support for PyPy * Elliptic curves cryptography (NIST P-256 curve only) * Better and more compact API (`nonce` and `iv` attributes for ciphers, automatic generation of random nonces and IVs, simplified CTR cipher mode, and more) * SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms * Salsa20 and ChaCha20 stream ciphers * Poly1305 MAC * ChaCha20-Poly1305 authenticated cipher * scrypt and HKDF * Deterministic (EC)DSA * Password-protected PKCS#8 key containers * Shamir's Secret Sharing scheme * Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace) * Simplified install process, including better support for Windows * Cleaner RSA and DSA key generation (largely based on FIPS 186-4) * Major clean ups and simplification of the code base PyCryptodome is not a wrapper to a separate C library like *OpenSSL*. To the largest possible extent, algorithms are implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are implemented as C extensions. |
PackageName | python3-pycryptodome |
PackageRelease | lp151.2.4 |
PackageVersion | 3.9.9 |
SHA-1 | CF39E408AE9716225C974072A7736807D65DEE4C |
SHA-256 | 14754115979C3959AAB60A39316F818360F6694903E222EF173E502AA6B7E45C |