Result for 00F45AE5F54CB219A3CD708A47479C4950033E82

Query result

Key Value
FileName./usr/include/shogun/lib/external/SFMT/SFMT-params44497.h
FileSize1998
MD5210CFDD2F60CFD0A30C979E1B58BA6F4
SHA-100F45AE5F54CB219A3CD708A47479C4950033E82
SHA-25647EBD66246DE9221859AE21545577B35DECF1DAE1FF0214464018D5E0DA74DB6
SSDEEP48:RxrxB58evM5jFKGL8C8i8f8RYQwjfj59uOjRj5j8jVHZRJj4j+ntj9jS9jUjqR6y:u5bqAzj+
TLSHT1D441CF7D5B80621CDBA501C59B98E9197247FA7730E28CAC3641E8DD9EC3C1B8EF168D
hashlookup:parent-total20
hashlookup:trust100

Network graph view

Parents (Total: 20)

The searched file hash is included in 20 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize1537158
MD5C199C94E43ABCEA25ABAC66B31CB5AEE
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerSoeren Sonnenburg <sonne@debian.org>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-7.3
SHA-1109CF96F11881417AA73B3A0849648C1FD015B86
SHA-256A74C47E4268DCE64130F1A61D4CCF1A0A203B6C1607B285097817A82480B08AF
Key Value
FileSize1538796
MD5DB4F84D080A258EC2FAA13226C29C70D
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerSoeren Sonnenburg <sonne@debian.org>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-7.3
SHA-113532D4CD2984E2A32D52C95B5D240AE6F4C588C
SHA-256400CC7EAD2768D0DF18314D45E82F5E0EC73C149A1072EDA2298CC8E4AC89120
Key Value
FileSize609770
MD53C85B3541B258A22A6953C63DAC396F1
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-7.3build4
SHA-11F22CBFA9FB2508E4CF3BBE49A11267B0C184486
SHA-2565A1968EEE5F7C8788E25141FC65FDEE43D49409392F566DA715130CC14E7DE0F
Key Value
FileSize1531732
MD506695F9BF4BCB387C47CCDC745E194D2
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-8+b1
SHA-1220EEBC461C6624F4E1BBE39BA99C4C3112E3392
SHA-2566170315C72691DC3E5751A8A7F04DD60C79AB199DC920EA40DE0904430BB76A4
Key Value
FileSize609706
MD5DC3A319BD94E5047523FA1D1C0D507B6
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-7.3build4
SHA-12B83E9427EA31FF528F08E7F5D683C969C86F78A
SHA-2560A9D167E8F1D35E52703EDA126F8E3F3B31D0CAB1F59C11C60CA6ADA3A329541
Key Value
FileSize601324
MD5AEE06AAC13E2D24DC425C33A8451FBFD
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.1.1-1
SHA-13A36E288B18BDB7471294DA5A2699DF16BA80479
SHA-256EAA74804D3D7E8E77A8B3D6BA731340D2E36066EEE3EFEE0110833C7DBF89ED2
Key Value
FileSize1531668
MD5F6D1F2292F4F66D6ADD59B16654AEBAE
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-8+b1
SHA-14B54F26CA2B67B805DB03E2B378EBA5C9A2E1CD7
SHA-256B813B99FF70FBA8DCD6AAA395C93AD297C8DAFFE8D908C6EB2840945CE535F3A
Key Value
FileSize1531736
MD52DA7A6C64603D920F25E7ACF2A6902D5
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-8+b1
SHA-17222FEBA680713F28F7DD7EDAF063C1635644420
SHA-256C2E1949D09563131B57AD242E00A84FB101DC2DFC482705FE1BD788F830BF8A3
Key Value
FileSize1531760
MD5EAE3E4DD0560E1A7CC2D49FF86D1567A
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-8+b1
SHA-193169A714D2526F1ECB1235F4506AD111A69D495
SHA-256F7A9AD9CAC3221A09D61F3EA1D9F5E6C28C1340F9F3E37E64453F56EFE32A82C
Key Value
FileSize1531740
MD59D5C54DFFE99399AE2676006F4050EB5
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-8+b1
SHA-196222E7382A31E79844E5F94A5F2B171772AE2CE
SHA-25668718E270E30887A530723D390A2E518287E57FF43133EF444298092EBDD4329