Result for 00AB5DEDD78AAFB16A6EC341AE5E506AB90C676D

Query result

Key Value
FileNamesnap-hashlookup-import/lib/python3.8/site-packages/numba/cuda/simulator/cudadrv/driver.py
FileSize899
MD53B21D8E80C3D945A2FD680FEC6225D84
SHA-100AB5DEDD78AAFB16A6EC341AE5E506AB90C676D
SHA-2564145FED3688066D2AF395DE81EF14F6976C09C95D5B859B346DCF7FA211F34F6
SHA-512EE955CFD02F7B50F441A68B4D3935E6D8EBC544A413694D1D569AF14AA8767F4806D0D43AE2170585E920E17990A2C3B95004ABDABC545A61783BC1EA2BBD3DD
SSDEEP12:lMvfDgMBL7xQM0MQQMt9U4FuGynEhWha0GrFfkB36bmv4PmZBumyeF2R8:qcMovKiOEhWh3UuCmZkeFl
TLSHT16B11904FC9658612A43355D7FD164A23FB5F4A7EC16E2FB87484C591DF001BC94246E4
insert-timestamp1645179901.58969
mimetypetext/x-python
sourcesnap:XSlaE4S2cu0h5r6o7dFaFiQIsugKLFpa_412
hashlookup:parent-total7
hashlookup:trust85

Network graph view

Parents (Total: 7)

The searched file hash is included in 7 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD57E250C677779DB2CE266323F07C030E9
PackageArchx86_64
PackageDescriptionNumba is a NumPy-aware optimizing compiler for Python. It uses the LLVM compiler infrastructure to compile Python syntax to machine code. It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls, effectively removing the "interpreter", but not removing the dynamic indirection. Numba is also not a tracing JIT. It *compiles* your code before it gets run, either using run-time type information or type information you provide in the decorator. Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython39-numba
PackageRelease1.1
PackageVersion0.54.1
SHA-1653AC357386A704534053478C755717F278F26E1
SHA-25605194971C0F9BB327CC76D4678FD0982630CFED6D52CBB083A2B0AB6514502C5
Key Value
SHA-114D08E836699F25B7DF5E0D4579D04287835202C
snap-authoritycanonical
snap-filenameEh5d6hCnbpqR36tMfSRYZaJ0XIaSVHej_12.snap
snap-idEh5d6hCnbpqR36tMfSRYZaJ0XIaSVHej_12
snap-namegenx
snap-publisher-idFUnuZbmzWeQWDhvZd0RDvz2YLL3AtBaM
snap-signkeyBWDEoaqyr25nF5SNCvEv2v7QnM9QsfCc0PBMYD_i2NGSQ32EF2d4D0hqUel3m8ul
snap-timestamp2021-12-07T16:46:24.001065Z
source-urlhttps://api.snapcraft.io/api/v1/snaps/download/Eh5d6hCnbpqR36tMfSRYZaJ0XIaSVHej_12.snap
Key Value
SHA-1D01D2D7AEF561873D0ABA03B29079D8D27638ED3
snap-authoritycanonical
snap-filenameXSlaE4S2cu0h5r6o7dFaFiQIsugKLFpa_412.snap
snap-idXSlaE4S2cu0h5r6o7dFaFiQIsugKLFpa_412
snap-nameroot-framework
snap-publisher-idVoUAJzdpg1T1K8hp70EmA7f7dJkxb7BA
snap-signkeyBWDEoaqyr25nF5SNCvEv2v7QnM9QsfCc0PBMYD_i2NGSQ32EF2d4D0hqUel3m8ul
snap-timestamp2020-11-27T06:22:05.033990Z
source-urlhttps://api.snapcraft.io/api/v1/snaps/download/XSlaE4S2cu0h5r6o7dFaFiQIsugKLFpa_412.snap
Key Value
MD5F153423B8725959B6601D2C7B3469B30
PackageArchi586
PackageDescriptionNumba is a NumPy-aware optimizing compiler for Python. It uses the LLVM compiler infrastructure to compile Python syntax to machine code. It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls, effectively removing the "interpreter", but not removing the dynamic indirection. Numba is also not a tracing JIT. It *compiles* your code before it gets run, either using run-time type information or type information you provide in the decorator. Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython39-numba
PackageRelease1.1
PackageVersion0.54.1
SHA-1A007C017DC97F5610EB470F1014B2A9529AA0ED7
SHA-256708D9C76533CE88D2767AE84B0003F2499D54F28842009266CDE226B6EB34459
Key Value
SHA-1D982BBF50A22CED52926CC14BD6626DBAC258604
snap-authoritycanonical
snap-filenameXSlaE4S2cu0h5r6o7dFaFiQIsugKLFpa_359.snap
snap-idXSlaE4S2cu0h5r6o7dFaFiQIsugKLFpa_359
snap-nameroot-framework
snap-publisher-idVoUAJzdpg1T1K8hp70EmA7f7dJkxb7BA
snap-signkeyBWDEoaqyr25nF5SNCvEv2v7QnM9QsfCc0PBMYD_i2NGSQ32EF2d4D0hqUel3m8ul
snap-timestamp2020-11-27T06:22:05.033990Z
source-urlhttps://api.snapcraft.io/api/v1/snaps/download/XSlaE4S2cu0h5r6o7dFaFiQIsugKLFpa_359.snap
Key Value
MD55A90D3C00EC378B410B78D1FF0464097
PackageArchx86_64
PackageDescriptionNumba is a NumPy-aware optimizing compiler for Python. It uses the LLVM compiler infrastructure to compile Python syntax to machine code. It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls, effectively removing the "interpreter", but not removing the dynamic indirection. Numba is also not a tracing JIT. It *compiles* your code before it gets run, either using run-time type information or type information you provide in the decorator. Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython38-numba
PackageRelease1.1
PackageVersion0.54.1
SHA-1A0C3FD5C6CBAB490C4A32015EA2DF316566DCCCC
SHA-256E3B854BB85C41775F7F33961743B07BCC261DA17D1B5EC811A6907A1C0BBDE04
Key Value
MD58AC15F04554BE845A3321089D6313399
PackageArchi586
PackageDescriptionNumba is a NumPy-aware optimizing compiler for Python. It uses the LLVM compiler infrastructure to compile Python syntax to machine code. It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls, effectively removing the "interpreter", but not removing the dynamic indirection. Numba is also not a tracing JIT. It *compiles* your code before it gets run, either using run-time type information or type information you provide in the decorator. Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython38-numba
PackageRelease1.1
PackageVersion0.54.1
SHA-102084C3E85C4C817D8A80A69A7AEEF3F21FBB66C
SHA-256EDDD5607A00BB1A9B537D795AE58ABF5B7D6F1A415388FAF68AE65BF76CE0904