Result for 00612D6BC6DE0B507E2FAE455077E6D86131622F

Query result

Key Value
FileName./usr/lib64/R/library/qtl/data/fake.bc.RData
FileSize17368
MD50C7D668C69226022238215EF1FBA6B93
SHA-100612D6BC6DE0B507E2FAE455077E6D86131622F
SHA-2560433D0DB0A1B53A214EB521C413074DBC8F4B794307FC5CE714B833A3C9B379F
SSDEEP384:e/9bKx+3E3aepzPY8HKCXsij/mtBXaFMq8rb0kzKXC2uKt:e/Mx+UpzjqKsij/rF5kzKS2Ht
TLSHT1BF72D0374C0B141BB15AAB57FCBCD85B5C727A1621C8333F613FA4A57684A3392702EA
hashlookup:parent-total9
hashlookup:trust95

Network graph view

Parents (Total: 9)

The searched file hash is included in 9 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD52E73EAB54C2CF46809A86C19610096D8
PackageArchs390x
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc21
PackageVersion1.33.7
SHA-12A3D407AE1C9E707FD1C9A59083FD9E6E9AB894A
SHA-256F5208597A33B4760B5650491F816B23D79BB772EBEEDBF2BABF855505047F2AF
Key Value
FileSize4373600
MD5AAD5E7859864B792FC436201F089A557
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses were implemented. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.33-7-1
SHA-18B1258639058D540ABF81A1F970F350FC2D94958
SHA-25626C98362FB1C372105BC3E513EBBAB664572423EF8D7385D3951C417B1EA1CFF
Key Value
FileSize4383888
MD57570CA289B425FFBB2A6CAA8DADA00D2
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses were implemented. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.33-7-1
SHA-15229C87058A483B0EBCACBE45B6C7F2876E09CBC
SHA-25624AF65F308F7D912DA6974A3D3F004634376C8E9635C2D9AC89D514711326FCC
Key Value
FileSize4405702
MD53C6667FEE36B0F2C7226A80597A694BF
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses were implemented. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.33-7-1
SHA-162FF66C97A353F30F257B3CBBB92E42FCCBFBF03
SHA-25615BAD853DB86332CD7B79EA1F517B5AF5FD53EF8226896BEA91640797C3CA720
Key Value
MD5816D21FEB2505AD33C276EC390C66534
PackageArchs390
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc21
PackageVersion1.33.7
SHA-1F5ACA968A60A2A07059014AC98D8DBC930C67ED3
SHA-256954498A0C568C14A40D7C07C02B8423DD354894988578955BE4DBCF576859D5B
Key Value
FileSize4397928
MD5A090DC2BBA8EEE266D465D3504137EB1
PackageDescriptionGNU R package for genetic marker linkage analysis R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is implemented as an add-on-package for the freely available and widely used statistical language/software R (see http://www.r-project.org). . The development of this software as an add-on to R allows one to take advantage of the basic mathematical and statistical functions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of the QTL mapping software into a general statistical analysis program. The goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. . A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. The main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses were implemented. . The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamer-cran-qtl
PackageSectiongnu-r
PackageVersion1.33-7-1
SHA-1EEFF1D62FFC5F13CBC7E263495C2D58C93FCC394
SHA-2562B352132A84C96D605336C3367CCDA1DC18861A91A0C4105F58CBCB68CAE283B
Key Value
MD5D0D781B0366BB5D96A51A7BCCE989E99
PackageArchaarch64
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc21
PackageVersion1.33.7
SHA-1FC0E744C530F99D0E72175BB71952C715DE61A61
SHA-25681B01AE265A1E5D3B2178CD3B520088A0D9440E07DF4E61E962EFF8F67E723D9
Key Value
MD5A776C237AF7640D12E4A0E44D738DF67
PackageArchppc64le
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc21
PackageVersion1.33.7
SHA-1F4038C9C5A364EBBFA619F0983E5BFFD92AC4C1E
SHA-25669D9D5D2FF9E4C98F4615EF0D1E533928F327C5060A3943C57BA22B55FBE8321
Key Value
MD5046955D649E93E50E621D7593A642BE4
PackageArchppc64
PackageDescriptionR-qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. Our goal is to make complex QTL mapping methods widely accessible and allow users to focus on modeling rather than computing. A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing with missing genotype data. We have implemented the main HMM algorithms, with allowance for the presence of genotyping errors, for backcrosses, intercrosses, and phase-known four-way crosses. The current version of R-qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment). One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.
PackageMaintainerFedora Project
PackageNameR-qtl
PackageRelease1.fc21
PackageVersion1.33.7
SHA-1468D1120EFCA86596E63C9EB074299DA64C71EFC
SHA-2565ADE553925F1F79DA93441DF1332C3CBFAC70FB28294445DC0D9ECF8E6762D81