Result for 004360EE2D0B1243E062C5F624190C6C013594E1

Query result

Key Value
FileName./usr/share/doc/shogun/html_cn/classshogun_1_1CInferenceMethod__inherit__graph.png
FileSize46624
MD5660B8613FAED1BB7816403B568676FE9
SHA-1004360EE2D0B1243E062C5F624190C6C013594E1
SHA-256342FA26CBBFFF0305141179764A338BB2BCF0F9E4955EED55B97B740FEA2D972
SSDEEP768:GPyBE0bMXkhFSOQyAldING9sZBqQM0nwxgRqsNBXDddZjbYLVh:GPT0oXkhFzoINAQ7nIsNBTdrPYLVh
TLSHT18023F1F97AE2F988CDBB50B5D9DE1F88DD2B1A4AC91699F1141039C4E65BB311021FCC
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD552FD8EB8EC2348D1E76EF4C3774BD7AE
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the ChangeLog, a very detailed documentation, and some great examples for shogun. If you need the Chinese API-docs, you would want to install shogun-doc-cn, too.
PackageMaintainerFedora Project
PackageNameshogun-doc
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-16B425709841A847AA3FC7B9406D58797384F2D74
SHA-256C000A7DBAAA5718314D0FD8C3AFA5BC92E7673CEAB57EEBFC678AF86BD6CBE2D
Key Value
MD595CC96D701048F5A50ED9782C6AABF1C
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the documentation files for shogun in Chinese language.
PackageMaintainerFedora Project
PackageNameshogun-doc-cn
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-1102FFF431D96C919194DCBE874B432A65BA2A499
SHA-256721AACE41B35270AB9346DF56A18CF1BEE0A216D4C5FA93E791CF6A727BD99B7
Key Value
MD5238979F9A06BCB35AC13A0EC7212902F
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the ChangeLog, a very detailed documentation, and some great examples for shogun. If you need the Chinese API-docs, you would want to install shogun-doc-cn, too.
PackageMaintainerFedora Project
PackageNameshogun-doc
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-1A34E8EDB663192FBCD8365C7741B89EF5C161B57
SHA-2562D3E44CD953AE0DEF8265D9F11BAB16E687E364AF995F54167E7ECA23226ADBA
Key Value
MD52EEC745F9CE248002037106425534DFF
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the documentation files for shogun in Chinese language.
PackageMaintainerFedora Project
PackageNameshogun-doc-cn
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-1D576A5B680253D2A8D20604CE15DB3372005A373
SHA-25667A9978CAFCCABF6932B986BC0F4197B4F946042519ECF629B7651D6AF5288BC