Key | Value |
---|---|
FileName | ./usr/share/doc/python-pandas-doc/html/_sources/reference/api/pandas.Series.dt.round.rst.txt |
FileSize | 113 |
MD5 | C7907A6BB6FBCC6DCFD01964231A4720 |
SHA-1 | 002B4ECD46053D137F04A264F4C1A57FE3A48EC4 |
SHA-256 | 02166F569446510771A0CA14DD7F3E7FDEA04926DDE4A2BF6C990B31789488A3 |
SSDEEP | 3:oL2fLae61M6B61EXEKQe8oWbLaen:Rae0XEYWvaen |
TLSH | T1C0B012027162141EE03D2231454101C5DC564C0D72400304081C05D8006DB782378A30 |
hashlookup:parent-total | 9 |
hashlookup:trust | 95 |
The searched file hash is included in 9 parent files which include package known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileSize | 7600084 |
MD5 | 4AD1E1372BD88BF470F7EE252277458C |
PackageDescription | documentation and examples for pandas This package contains documentation and example scripts for python-pandas. |
PackageMaintainer | Debian Science Team <debian-science-maintainers@lists.alioth.debian.org> |
PackageName | python-pandas-doc |
PackageSection | doc |
PackageVersion | 0.23.3+dfsg-3 |
SHA-1 | 26D541AE231CC177576B8702F8E2064AABA1A96E |
SHA-256 | E588ECEC41FA007FA76483D04DBF604F374DB68679877EB7DAAEDD54A275152A |
Key | Value |
---|---|
MD5 | B7D5777D233E2FE3A529D9DAD85D0347 |
PackageArch | noarch |
PackageDescription | Documentation, help files, and examples for python3-pandas. |
PackageMaintainer | https://bugs.opensuse.org |
PackageName | python-pandas-doc |
PackageRelease | lp150.1.18 |
PackageVersion | 0.22.0 |
SHA-1 | FA1D570BF96AEE6CB2741D76E48DAA1981B7C6BB |
SHA-256 | 04AABE341C59F738AB868B371D10E7D4DEFEA83FF05F66CE523A7A933B75EDC6 |
Key | Value |
---|---|
FileSize | 5621564 |
MD5 | 976AAC8B53AAC2CE2426478F8C48CDF4 |
PackageDescription | documentation and examples for pandas This package contains documentation and example scripts for python-pandas. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-pandas-doc |
PackageSection | doc |
PackageVersion | 0.22.0-4ubuntu1 |
SHA-1 | 8CEF194B414E21D5678ADA69466E754BF36AF36A |
SHA-256 | 667E022246A35D721AC9BAFEDA88CC2A8ABC60AB76BF842B2D073EEBB9638548 |
Key | Value |
---|---|
FileSize | 8196480 |
MD5 | 2F510352466D48A3D3714EF384A1840D |
PackageDescription | data structures for "relational" or "labeled" data - documentation pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure . This package contains the documentation. |
PackageMaintainer | Debian Science Team <debian-science-maintainers@lists.alioth.debian.org> |
PackageName | python-pandas-doc |
PackageSection | doc |
PackageVersion | 1.1.5+dfsg-2 |
SHA-1 | 7E258BB2E5AC3037B382983E1D08559847A8C2B0 |
SHA-256 | D5B984E6CE72C19E23B8703CC7ABAA231F33BDA0213023379DFE310C7F8241D7 |
Key | Value |
---|---|
FileSize | 5620620 |
MD5 | A09899719FE7BD059D199A3ACF1B556F |
PackageDescription | documentation and examples for pandas This package contains documentation and example scripts for python-pandas. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-pandas-doc |
PackageSection | doc |
PackageVersion | 0.22.0-4 |
SHA-1 | 3C5720DD5359931666A80DCB37EB000639A39D94 |
SHA-256 | 093E25D2EF3921F5BE7F624986DCB0E8F5932775184B8FE5DDF6FA4C4633D56F |
Key | Value |
---|---|
FileSize | 8184904 |
MD5 | 75A46F7D98F9CB59B2DB3D54A74392F3 |
PackageDescription | data structures for "relational" or "labeled" data - documentation pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure . This package contains the documentation. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-pandas-doc |
PackageSection | doc |
PackageVersion | 1.1.5+dfsg-2 |
SHA-1 | 05B41ABEF07C7FFB96EB3B1EAC95F1CBF6D2AABB |
SHA-256 | 64D781FB37323CD39C44100BFA0AB071606DFFFB76269F70C2141E3710362387 |
Key | Value |
---|---|
FileSize | 7655112 |
MD5 | 5CA98AF9A11039AB63B4646F6F4E9C85 |
PackageDescription | data structures for "relational" or "labeled" data - documentation pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure . This package contains the documentation. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-pandas-doc |
PackageSection | doc |
PackageVersion | 1.0.5+dfsg-3 |
SHA-1 | 859E82C01366B6B895DA269F19E4440449F95E9F |
SHA-256 | 7D9973698376C6639C26EF9089283514F2D346AE70D8C0194BE20AA47B394D32 |
Key | Value |
---|---|
FileSize | 5060394 |
MD5 | F5BF9F1EAD6B304CD8C4B2B4123E7249 |
PackageDescription | documentation and examples for pandas This package contains documentation and example scripts for python-pandas. |
PackageMaintainer | NeuroDebian Team <team@neuro.debian.net> |
PackageName | python-pandas-doc |
PackageSection | doc |
PackageVersion | 0.19.2-5.1 |
SHA-1 | 746FEBBB66E26A365C34644AC857B7CF02E574D1 |
SHA-256 | 8DD46015F8A4910F164081D7FE501A0CDA3A3DB158CB5E25A4770E65DA5E7A45 |
Key | Value |
---|---|
FileSize | 6939488 |
MD5 | E0650D66C28112477451D41E38787305 |
PackageDescription | data structures for "relational" or "labeled" data - documentation pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data: . - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure . This package contains the documentation. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-pandas-doc |
PackageSection | doc |
PackageVersion | 0.25.3+dfsg-7 |
SHA-1 | 4607CEFF250A7EC5819AD72549EB2EC7730C932B |
SHA-256 | 528FF7B697466AF9606E3BB4C1DF5033C8169E9CE8B6FB765D54A8C16B957318 |