Result for 002B0F8AAF9F0E246CB2C9098DEF079F85821F20

Query result

Key Value
FileName./usr/share/doc/shogun/html/BinaryFile_8h_source.html
FileSize80607
MD5C1AC2CF201CA803D95448C71801E95ED
SHA-1002B0F8AAF9F0E246CB2C9098DEF079F85821F20
SHA-2563F0447923C4E66E5AF194D3E9FBF05303090F63BE690F0A22AC252A0ACD1B96B
SSDEEP1536:emH9l7whUncHb3Gn6w1EqS86avfAcAfRNVujWfv1ffET1GU53iCDg84x3Zz:emH9l3cHb3Gn6w1Eqpv4cApNkjWH16gz
TLSHT1DC738CA182D30C3346A3D5D6ABF9AB3D71E25A5BDAC7020CB9FC2BB417C6E813597414
hashlookup:parent-total1
hashlookup:trust55

Network graph view

Parents (Total: 1)

The searched file hash is included in 1 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD50C4979D4F74741B3776FB2EE58BBDD8F
PackageArchaarch64
PackageDescriptionThis package contains very detailed documentation, and some great examples for shogun. If you need the Chinese API-docs, you would want to install shogun-doc-cn, too. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNameshogun-doc
PackageRelease2.fc24
PackageVersion4.1.0
SHA-1B19E3540BFB0874DF32A5AF8145E401CA499F7AF
SHA-256BB0495BEE2B8B9D8D92927920A7DA9B39A42F49760BB1472EBA3C68C16C00E0F