Result for 0018200AA4012DA9580FE0E0B6659F951D8E0F6A

Query result

Key Value
FileName./usr/share/doc/tapkee-doc/README.md
FileSize14547
MD51BAF558B37AE157E3321E1EC6440F7AB
SHA-10018200AA4012DA9580FE0E0B6659F951D8E0F6A
SHA-2566C7FB888C7120F10EE713F45539621B41107617A06801086EE12AF59D40EE91A
SSDEEP192:pGliwrgy0lRIUbHZrNeZUXZLASui7ddYsyi2C8SBP/2avI9EcS:pGoyJ0rHZroZUJLhuiR9Jp9vINS
TLSHT18F62073BAF4A52218AE3E1E556AD56CDEB3AC038B7555C7034AC810C221302663BFBD5
hashlookup:parent-total44
hashlookup:trust100

Network graph view

Parents (Total: 44)

The searched file hash is included in 44 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD542794414CF7A611361ABA4126491ABC3
PackageArchs390x
PackageDescriptionTapkee is a cli-tool for efficient dimension reduction and provides implementations of the following dimension reduction methods: * Locally Linear Embedding and Kernel Locally Linear Embedding (LLE/KLLE) * Neighborhood Preserving Embedding (NPE) * Local Tangent Space Alignment (LTSA) * Linear Local Tangent Space Alignment (LLTSA) * Hessian Locally Linear Embedding (HLLE) * Laplacian eigenmaps * Locality Preserving Projections * Diffusion map * Isomap and landmark Isomap * Multidimensional scaling and landmark Multidimensional scaling (MDS/lMDS) * Stochastic Proximity Embedding (SPE) * PCA and randomized PCA * Kernel PCA (kPCA) * Random projection * Factor analysis * t-SNE * Barnes-Hut-SNE
PackageMaintainerFedora Project
PackageNametapkee-cli
PackageRelease3.fc21
PackageVersion1.0
SHA-102E678EB249A7BC54C41F552BD7758E1EE32D646
SHA-2561F0CE7789D7F7832024B68D3956EC0CB55D303E8D121AE407FEAE15263CBB6DE
Key Value
MD5985F905EB488F64647F841E671DCF8F6
PackageArchnoarch
PackageDescriptionTapkee is a C++ template library for dimensionality reduction with some bias on spectral methods. The Tapkee origins from the code developed during GSoC 2011 as the part of the Shogun machine learning toolbox. The project aim is to provide efficient and flexible standalone library for dimensionality reduction which can be easily integrated to existing codebases. Tapkee leverages capabilities of effective Eigen3 linear algebra library and optionally makes use of the ARPACK eigensolver. The library uses CoverTree and VP-tree data-structures to compute nearest neighbors. To achieve greater flexibility we provide a callback interface which decouples dimension reduction algorithms from the data representation and storage schemes. Tapkee provides implementations of the following dimension reduction methods: * Locally Linear Embedding and Kernel Locally Linear Embedding (LLE/KLLE) * Neighborhood Preserving Embedding (NPE) * Local Tangent Space Alignment (LTSA) * Linear Local Tangent Space Alignment (LLTSA) * Hessian Locally Linear Embedding (HLLE) * Laplacian eigenmaps * Locality Preserving Projections * Diffusion map * Isomap and landmark Isomap * Multidimensional scaling and landmark Multidimensional scaling (MDS/lMDS) * Stochastic Proximity Embedding (SPE) * PCA and randomized PCA * Kernel PCA (kPCA) * Random projection * Factor analysis * t-SNE * Barnes-Hut-SNE
PackageMaintainerFedora Project
PackageNametapkee-devel
PackageRelease6.fc24
PackageVersion1.0
SHA-1096ADC455DCDD18882895C0053AC21CCBB46B6E4
SHA-2566614BCF50CF7A1D9DF0FFCCE48F4DF68FF161C41602C09B630847F2BE2613FDC
Key Value
MD58C53BC0A6D29E07A8BB698E761798FF6
PackageArchppc64
PackageDescriptionTapkee is a cli-tool for efficient dimension reduction and provides implementations of the following dimension reduction methods: * Locally Linear Embedding and Kernel Locally Linear Embedding (LLE/KLLE) * Neighborhood Preserving Embedding (NPE) * Local Tangent Space Alignment (LTSA) * Linear Local Tangent Space Alignment (LLTSA) * Hessian Locally Linear Embedding (HLLE) * Laplacian eigenmaps * Locality Preserving Projections * Diffusion map * Isomap and landmark Isomap * Multidimensional scaling and landmark Multidimensional scaling (MDS/lMDS) * Stochastic Proximity Embedding (SPE) * PCA and randomized PCA * Kernel PCA (kPCA) * Random projection * Factor analysis * t-SNE * Barnes-Hut-SNE
PackageMaintainerFedora Project
PackageNametapkee-cli
PackageRelease3.fc22
PackageVersion1.0
SHA-10DDEDFBF490D04BBE0DF3BDEFD6096FC97BC4060
SHA-25614433703EA556322E06911922523C2EB2A59AC1E53244280D821A97F1FF667B6
Key Value
MD52D04D9B0517F69C475BCF7AEA35EAD54
PackageArchnoarch
PackageDescriptionThis package contains the documentation files and some brief examples for tapkee.
PackageMaintainerFedora Project
PackageNametapkee-doc
PackageRelease3.fc22
PackageVersion1.0
SHA-10E1B4EBDB5BC25301429D873A1873509167A4961
SHA-256C2BCAC9B90A805910613118C325822D2C4DD4920BCE20361EEF27F0F9EE58D9F
Key Value
MD5A3DD8991C587E3AD2D7C7D06E9EAD81D
PackageArchs390x
PackageDescriptionTapkee is a cli-tool for efficient dimension reduction and provides implementations of the following dimension reduction methods: * Locally Linear Embedding and Kernel Locally Linear Embedding (LLE/KLLE) * Neighborhood Preserving Embedding (NPE) * Local Tangent Space Alignment (LTSA) * Linear Local Tangent Space Alignment (LLTSA) * Hessian Locally Linear Embedding (HLLE) * Laplacian eigenmaps * Locality Preserving Projections * Diffusion map * Isomap and landmark Isomap * Multidimensional scaling and landmark Multidimensional scaling (MDS/lMDS) * Stochastic Proximity Embedding (SPE) * PCA and randomized PCA * Kernel PCA (kPCA) * Random projection * Factor analysis * t-SNE * Barnes-Hut-SNE
PackageMaintainerFedora Project
PackageNametapkee-cli
PackageRelease1.fc20
PackageVersion1.0
SHA-1124CDCFE630B3244CE1DAB39BF1493DC25B51610
SHA-2565421A9FC701D59B6979CD04F591949937D4558ACC37BDC05CE739EE1D626F1B1
Key Value
MD563C0CAB6C254AD25C7F0D05176A24F47
PackageArchnoarch
PackageDescriptionThis package contains the documentation files and some brief examples for tapkee.
PackageMaintainerFedora Project
PackageNametapkee-doc
PackageRelease5.fc23
PackageVersion1.0
SHA-1139F0624AD77A4B427A23CE04578E103E2639ECA
SHA-256D87B89141C983B68F01E8E3CB3CA9F3745D01458E3E5A80F187C1BE3156C144F
Key Value
MD5E851048B3C04089E0051C259077EBFF6
PackageArchs390
PackageDescriptionTapkee is a cli-tool for efficient dimension reduction and provides implementations of the following dimension reduction methods: * Locally Linear Embedding and Kernel Locally Linear Embedding (LLE/KLLE) * Neighborhood Preserving Embedding (NPE) * Local Tangent Space Alignment (LTSA) * Linear Local Tangent Space Alignment (LLTSA) * Hessian Locally Linear Embedding (HLLE) * Laplacian eigenmaps * Locality Preserving Projections * Diffusion map * Isomap and landmark Isomap * Multidimensional scaling and landmark Multidimensional scaling (MDS/lMDS) * Stochastic Proximity Embedding (SPE) * PCA and randomized PCA * Kernel PCA (kPCA) * Random projection * Factor analysis * t-SNE * Barnes-Hut-SNE
PackageMaintainerFedora Project
PackageNametapkee-cli
PackageRelease3.fc22
PackageVersion1.0
SHA-115E9DA49170891485B229A70572ADC4B1EAF94F2
SHA-256282F3A6098E3751C2B94D59D6DA4B9482A364EF11400220EA69E7BEE91BF1E7E
Key Value
MD589A2BB1637C591F276519840B0FDEB05
PackageArchnoarch
PackageDescriptionTapkee is a C++ template library for dimensionality reduction with some bias on spectral methods. The Tapkee origins from the code developed during GSoC 2011 as the part of the Shogun machine learning toolbox. The project aim is to provide efficient and flexible standalone library for dimensionality reduction which can be easily integrated to existing codebases. Tapkee leverages capabilities of effective Eigen3 linear algebra library and optionally makes use of the ARPACK eigensolver. The library uses CoverTree and VP-tree data-structures to compute nearest neighbors. To achieve greater flexibility we provide a callback interface which decouples dimension reduction algorithms from the data representation and storage schemes. Tapkee provides implementations of the following dimension reduction methods: * Locally Linear Embedding and Kernel Locally Linear Embedding (LLE/KLLE) * Neighborhood Preserving Embedding (NPE) * Local Tangent Space Alignment (LTSA) * Linear Local Tangent Space Alignment (LLTSA) * Hessian Locally Linear Embedding (HLLE) * Laplacian eigenmaps * Locality Preserving Projections * Diffusion map * Isomap and landmark Isomap * Multidimensional scaling and landmark Multidimensional scaling (MDS/lMDS) * Stochastic Proximity Embedding (SPE) * PCA and randomized PCA * Kernel PCA (kPCA) * Random projection * Factor analysis * t-SNE * Barnes-Hut-SNE
PackageMaintainerFedora Project
PackageNametapkee-devel
PackageRelease3.fc21
PackageVersion1.0
SHA-11FC7803F82A70E0F6EF722F6DBC1903403C3D6E9
SHA-2562F11CC7925AADB52FC5EC712A9C0D2D60A895D711844FC91B4A15CD7575F29E0
Key Value
MD50CA1783A44B29D44F99E25D6897A76F0
PackageArchnoarch
PackageDescriptionThis package contains the documentation files and some brief examples for tapkee.
PackageMaintainerFedora Project
PackageNametapkee-doc
PackageRelease3.fc22
PackageVersion1.0
SHA-12061B9B54B36AC0F2FDA05CD6008FD472A05627F
SHA-2568C55B7B402816494E1A3516BB5F5EE03BCFF6272492CF2D88B81D8E4102EBCD9
Key Value
MD5D6BC55AF6175A19DB531F98501489B54
PackageArchnoarch
PackageDescriptionTapkee is a C++ template library for dimensionality reduction with some bias on spectral methods. The Tapkee origins from the code developed during GSoC 2011 as the part of the Shogun machine learning toolbox. The project aim is to provide efficient and flexible standalone library for dimensionality reduction which can be easily integrated to existing codebases. Tapkee leverages capabilities of effective Eigen3 linear algebra library and optionally makes use of the ARPACK eigensolver. The library uses CoverTree and VP-tree data-structures to compute nearest neighbors. To achieve greater flexibility we provide a callback interface which decouples dimension reduction algorithms from the data representation and storage schemes. Tapkee provides implementations of the following dimension reduction methods: * Locally Linear Embedding and Kernel Locally Linear Embedding (LLE/KLLE) * Neighborhood Preserving Embedding (NPE) * Local Tangent Space Alignment (LTSA) * Linear Local Tangent Space Alignment (LLTSA) * Hessian Locally Linear Embedding (HLLE) * Laplacian eigenmaps * Locality Preserving Projections * Diffusion map * Isomap and landmark Isomap * Multidimensional scaling and landmark Multidimensional scaling (MDS/lMDS) * Stochastic Proximity Embedding (SPE) * PCA and randomized PCA * Kernel PCA (kPCA) * Random projection * Factor analysis * t-SNE * Barnes-Hut-SNE
PackageMaintainerFedora Project
PackageNametapkee-devel
PackageRelease3.fc21
PackageVersion1.0
SHA-123F518AF8636F0A389D487BCBC63D13977CC8FF2
SHA-256D9E068E75E45305FEB3388C96D95D4F1B9C880AE59B9A305A036176C9D05CCA8