Key | Value |
---|---|
FileName | snap-hashlookup-import/lib/python3.10/site-packages/caffe2/python/serialized_test/data/operator_test/filler_ops_test.test_lengths_range_fill.zip |
FileSize | 1054 |
MD5 | B18952A54544E3891CA3C0C55B6FAF63 |
SHA-1 | 0013F98D69EC28BEEA690CE752591BFF04FE186E |
SHA-256 | CE4CAF6E6189CA4A743D55103C275BFE86ECFED26359329A5BEDC0689EAD5042 |
SHA-512 | D02E207A7F1F406A8A671B2B9AFBA97D9CE118D5524B541265E5A5584D0D17582F554E4F7AEC9C5A90A127C8DF0D005D75C9CFA390DC4FA4C4C3C4ED3B98D9DD |
SSDEEP | 24:9ScktS8TXmN1X1yzWcDfrRz2ouFwa/BAN1X1yzWcDfrRUAlolNj4xdct8V:9OA1XYtz1CwIg1XYtztZV |
TLSH | T1311102D94B4D2A25CBCE06F0C9DE42118214849003143DED27E2E0703A3DECA7B31B2E |
insert-timestamp | 1727033030.7167118 |
mimetype | application/zip |
source | snap:mIfsuuQGdDlR7j5kz0nDW3k3UE7ae2ry_4 |
tar:gname | root |
tar:uname | root |
hashlookup:parent-total | 31 |
hashlookup:trust | 100 |
The searched file hash is included in 31 parent files which include package known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
SHA-1 | 1341D5F609E902191E39372AE258788D3754801C |
snap-authority | canonical |
snap-filename | zBLv2JUGUIIcGFXThPtU3mcSNJo7CZgW_11.snap |
snap-id | zBLv2JUGUIIcGFXThPtU3mcSNJo7CZgW_11 |
snap-name | argos-translate |
snap-publisher-id | Jekjha002c3lNU2gyMR4NLFdd1AC6JeW |
snap-signkey | BWDEoaqyr25nF5SNCvEv2v7QnM9QsfCc0PBMYD_i2NGSQ32EF2d4D0hqUel3m8ul |
snap-timestamp | 2021-02-02T13:37:28.172106Z |
source-url | https://api.snapcraft.io/api/v1/snaps/download/zBLv2JUGUIIcGFXThPtU3mcSNJo7CZgW_11.snap |
Key | Value |
---|---|
FileName | http://archlinux.mirror.root.lu//pool//community//python-pytorch-1.7.1-3-x86_64.pkg.tar.zst |
MD5 | 9EB58CD005B160DA4876D3B3F8B3A40F |
SHA-1 | 149470158511DCFC40BD85290F57B171F6A9A466 |
SHA-256 | 477FF0F69907AE80D7598702683F28405EB8B7F6E1A6AE3D21EEE02E35A393E4 |
SSDEEP | 786432:x4eQeSrcjK9NFaUYiUyMJoScsNSQWYJzwv+YlSvklbr6m50BZk2x5coz8Z+ONQgx:ytmeQxJoScISD+YSvzy8m2x5pM+z+ |
TLSH | T1DED733B048B33179C776C56293DDBA1043B5CF28106120DBBDDBA44B3BED2B2679A5C9 |
Key | Value |
---|---|
FileName | http://archlinux.mirror.root.lu//pool//community//python-pytorch-cuda-1.8.0-2-x86_64.pkg.tar.zst |
MD5 | 63EA6C61AE7B7A6ACF5CD6E6DCCE9682 |
SHA-1 | 1631AC86E206C6ACF23A26A9CAF591BB3F6E3A74 |
SHA-256 | 8684C18DE974582C9C06512BF6B0CEB4CEACDC97375A86200BC32F4715703A7A |
SSDEEP | 6291456:CDRqb2D/B1PyJSSpHvR23nZv/rc3EVYARaR/gQITFwx5dCKHNPHDZQQ5CRki4kZC:CNz1wDpHvgp7ZYsaBgQITOx5dCIPDZdL |
TLSH | T1AD0933D1A9A5CE7AC134507BFBAA9F8C71E1C0F1231812327744F43ED88AADED255D4A |
Key | Value |
---|---|
MD5 | 31DB9855E51EEBA03B3DB42448ED336D |
PackageArch | x86_64 |
PackageDescription | PyTorch enables fast, flexible experimentation and efficient production through a hybrid front-end, distributed training, and ecosystem of tools and libraries. The library is developed by Facebook and other groups. PyTorch provides two high-level features: * Tensor computing (like NumPy) with strong acceleration via graphics * processing units (GPU) Deep neural networks built on a tape-based autodiff system |
PackageName | python3-torch |
PackageRelease | lp153.7.7 |
PackageVersion | 1.5.1 |
SHA-1 | 29B93714AC929B47B92686AF7BE429B747ABB3F9 |
SHA-256 | 675A3BB0AB57AF6B4CF1F17F0B0F10158B734D9076AB5E2CE6A6136E1B7AA23F |
Key | Value |
---|---|
FileName | http://archlinux.mirror.root.lu//pool//community//python-pytorch-opt-cuda-1.8.0-2-x86_64.pkg.tar.zst |
MD5 | 8482BC91665FB009A86EEC653C425A39 |
SHA-1 | 2D69A39C1207DB6D1FFE31247A19C2C071B518B7 |
SHA-256 | 089D4AB4700F49DECCEDD59C8F5613E33B3C28622A1B0D604D03CFE6F55ECFE5 |
SSDEEP | 6291456:NPyGZ501vXirZHjGiUnAG1AiV7lm54ZsJfZDz1y12PsUOQiUA6TI/HydybYyN9+3:p01vSJjGhnAalh1p7QLTcSdyvGeNyF |
TLSH | T1C90933F0EB85CEB0D37E313D1AE31A8AB18644F4C915067E02666575F28EBE9C069D1F |
Key | Value |
---|---|
MD5 | 91D42436C11A9C545E383823EC6E575D |
PackageArch | x86_64 |
PackageDescription | PyTorch enables fast, flexible experimentation and efficient production through a hybrid front-end, distributed training, and ecosystem of tools and libraries. The library is developed by Facebook and other groups. PyTorch provides two high-level features: * Tensor computing (like NumPy) with strong acceleration via graphics * processing units (GPU) Deep neural networks built on a tape-based autodiff system |
PackageMaintainer | https://bugs.opensuse.org |
PackageName | python38-torch |
PackageRelease | 6.3 |
PackageVersion | 1.5.1 |
SHA-1 | 2DCBCC0643BC260D886A69975796021438020D3B |
SHA-256 | 049F5F9511BF52C61E15446761DF5E17B192C8984542B5A71D457E5627B4D221 |
Key | Value |
---|---|
MD5 | 35D3694568DFCB6711A22776821BAC0A |
PackageArch | x86_64 |
PackageDescription | PyTorch enables fast, flexible experimentation and efficient production through a hybrid front-end, distributed training, and ecosystem of tools and libraries. The library is developed by Facebook and other groups. PyTorch provides two high-level features: * Tensor computing (like NumPy) with strong acceleration via graphics * processing units (GPU) Deep neural networks built on a tape-based autodiff system |
PackageName | python3-torch |
PackageRelease | lp151.5.1 |
PackageVersion | 1.5.1 |
SHA-1 | 3F8B09D13C33A7A1976033674F4B28DEB92BC823 |
SHA-256 | 31C9F585CE24936EA9973F98F84E514C55A07D9F15FCD994E5F2B099AA19DDC4 |
Key | Value |
---|---|
MD5 | AB15BC753718C600B4437957FB392651 |
PackageArch | x86_64 |
PackageDescription | PyTorch enables fast, flexible experimentation and efficient production through a hybrid front-end, distributed training, and ecosystem of tools and libraries. The library is developed by Facebook and other groups. PyTorch provides two high-level features: * Tensor computing (like NumPy) with strong acceleration via graphics * processing units (GPU) Deep neural networks built on a tape-based autodiff system |
PackageName | python3-torch |
PackageRelease | lp152.7.5 |
PackageVersion | 1.5.1 |
SHA-1 | 45C319688DF834314655652B2D9E92ACD89BC900 |
SHA-256 | 55DF06FD049D49D3D09B7344A38E165C8D039CF6CB27F3776D1E31A03F33D460 |
Key | Value |
---|---|
MD5 | 10F192A7E9100D366E4DA02FE22253FE |
PackageArch | x86_64 |
PackageDescription | PyTorch enables fast, flexible experimentation and efficient production through a hybrid front-end, distributed training, and ecosystem of tools and libraries. The library is developed by Facebook and other groups. PyTorch provides two high-level features: * Tensor computing (like NumPy) with strong acceleration via graphics * processing units (GPU) Deep neural networks built on a tape-based autodiff system |
PackageName | python3-torch |
PackageRelease | 7.3 |
PackageVersion | 1.5.1 |
SHA-1 | 460B429E141AD88F31518851B8A0D666DD26547D |
SHA-256 | C32C52FA1632AB0DA7670E3F3A1532F8DC2C8D36D286C1C0223A20E6BCF09904 |
Key | Value |
---|---|
MD5 | B94C0471341A786C52100C671FA95ADE |
PackageArch | x86_64 |
PackageDescription | PyTorch enables fast, flexible experimentation and efficient production through a hybrid front-end, distributed training, and ecosystem of tools and libraries. The library is developed by Facebook and other groups. PyTorch provides two high-level features: * Tensor computing (like NumPy) with strong acceleration via graphics * processing units (GPU) Deep neural networks built on a tape-based autodiff system |
PackageMaintainer | https://bugs.opensuse.org |
PackageName | python310-torch |
PackageRelease | 6.3 |
PackageVersion | 1.5.1 |
SHA-1 | 4D770A48B4DB8D46F1832A503EFF02FC030554EA |
SHA-256 | FF35AB6FDB0ED98084136DE9F07B775E94CAF53FAB000A73F630EF1552713A34 |